Solve the system by graphing. \( y=-1 \) \( y=-\frac{5}{2} x+4 \) Solution: x-coordinate: \( y \)-coordinate:
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the system by graphing, you would plot the line \( y = -1 \), which is a horizontal line crossing the y-axis at -1, indicating that for any value of \( x \), \( y \) will always be -1. Next, plot the line \( y = -\frac{5}{2} x + 4 \). This line has a y-intercept of 4 and a slope that indicates it falls steeply. The two lines intersect at a point, which represents the solution to the system. To find the coordinates of the intersection, set \( y = -1 \) equal to the second equation: \(-1 = -\frac{5}{2} x + 4\) Rearranging gives: \(-\frac{5}{2} x = -1 - 4\) \(-\frac{5}{2} x = -5\) Multiplying both sides by \(-\frac{2}{5}\) results in: \( x = 2 \) Now substituting \( x = 2 \) back into one of the original equations to find \( y \): \( y = -1 \) Thus, the solution is: x-coordinate: \( 2 \) y-coordinate: \( -1 \) And there you have it!