Pregunta
upstudy study bank question image url

Writing an Equation with No, One, or Infinitely Many Solutions Write a number in each box so that the equation has the indicated number of solutions. (1) One solution \[ 2 x-1=4 x-1 \] (3) Infinitely many solutions \[ \frac{2}{5} x+3=\frac{2}{5} x+3 \] (5) One solution \[ 8 x+4=10 x-8 \] 2. No solution \[ \frac{1}{3} x+2=\frac{1}{3} x-3 \] (4) One solution \[ 2 \sqrt{2} x-2)=6 x+5 \] (6) No solution

Ask by Gross Lynch. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified solutions: 1. **One solution:** \( 2x - 1 = 4x - 1 \) has \( x = 0 \). 2. **No solution:** \( \frac{1}{3} x + 2 = \frac{1}{3} x - 3 \) has no solution. 3. **Infinitely many solutions:** \( \frac{2}{5} x + 3 = \frac{2}{5} x + 3 \) is always true. 4. **One solution:** \( 2\sqrt{2} x - 2 = 6x + 5 \) has \( x = \frac{7}{2\sqrt{2} - 6} \). 5. **One solution:** \( 8x + 4 = 10x - 8 \) has \( x = 6 \). 6. **No solution:** \( 2x + 1 = 2x - 5 \) has no solution.

Solución

Let's solve each of the equations step by step to ensure they meet the specified conditions of having one solution, infinitely many solutions, or no solution. ### (1) One solution The equation is: \[ 2x - 1 = 4x - 1 \] **Step 1:** Rearranging the equation: \[ 2x - 4x = -1 + 1 \] \[ -2x = 0 \] \[ x = 0 \] This equation has one solution, \( x = 0 \). ### (2) No solution The equation is: \[ \frac{1}{3} x + 2 = \frac{1}{3} x - 3 \] **Step 1:** Rearranging the equation: \[ \frac{1}{3} x - \frac{1}{3} x = -3 - 2 \] \[ 0 = -5 \] This is a contradiction, indicating that there is no solution. ### (3) Infinitely many solutions The equation is: \[ \frac{2}{5} x + 3 = \frac{2}{5} x + 3 \] **Step 1:** Rearranging the equation: \[ \frac{2}{5} x - \frac{2}{5} x = 3 - 3 \] \[ 0 = 0 \] This is always true, indicating that there are infinitely many solutions. ### (4) One solution The equation is: \[ 2\sqrt{2} x - 2 = 6x + 5 \] **Step 1:** Rearranging the equation: \[ 2\sqrt{2} x - 6x = 5 + 2 \] \[ (2\sqrt{2} - 6)x = 7 \] **Step 2:** Solving for \( x \): \[ x = \frac{7}{2\sqrt{2} - 6} \] This equation has one solution. ### (5) One solution The equation is: \[ 8x + 4 = 10x - 8 \] **Step 1:** Rearranging the equation: \[ 8x - 10x = -8 - 4 \] \[ -2x = -12 \] \[ x = 6 \] This equation has one solution, \( x = 6 \). ### (6) No solution To create an equation with no solution, we can use a similar structure to the previous no-solution example. For instance: \[ 2x + 1 = 2x - 5 \] **Step 1:** Rearranging the equation: \[ 2x - 2x = -5 - 1 \] \[ 0 = -6 \] This is a contradiction, indicating that there is no solution. ### Summary of Equations 1. One solution: \( 2x - 1 = 4x - 1 \) 2. No solution: \( \frac{1}{3} x + 2 = \frac{1}{3} x - 3 \) 3. Infinitely many solutions: \( \frac{2}{5} x + 3 = \frac{2}{5} x + 3 \) 4. One solution: \( 2\sqrt{2} x - 2 = 6x + 5 \) 5. One solution: \( 8x + 4 = 10x - 8 \) 6. No solution: \( 2x + 1 = 2x - 5 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To create an equation with one solution, you can simplify the equation so that the variable can be isolated to yield a distinct answer. For example, in \(2x - 1 = 4x - 1\), rearranging gives \(0 = 2x\), leading to one solution at \(x = 0\). For an equation with infinitely many solutions, the two expressions must be identical. Take \(\frac{2}{5}x + 3 = \frac{2}{5}x + 3\); this is true for any value of \(x\), showcasing infinite solutions. So feel free to get creative with equations that balance perfectly!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad