Pregunta
upstudy study bank question image url

12) The measures of two supplementary angles have a ratio of \( 4: 5 \). What is the measure of the larger angle? The measure of the larger angle is

Ask by Wang Chandler. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The larger angle measures **100 degrees**.

Solución

To find the measure of the larger supplementary angle with a ratio of \( 4:5 \), follow these steps: 1. **Understand Supplementary Angles:** - Supplementary angles add up to **180 degrees**. 2. **Set Up the Ratio:** - Let the two angles be \( 4x \) and \( 5x \), where \( x \) is a common multiplier. 3. **Create the Equation:** \[ 4x + 5x = 180 \] 4. **Solve for \( x \):** \[ 9x = 180 \\ x = \frac{180}{9} \\ x = 20 \] 5. **Find the Larger Angle:** - The larger angle is \( 5x \): \[ 5x = 5 \times 20 = 100 \text{ degrees} \] **Answer:** The measure of the larger angle is **100 degrees**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the measures of the two supplementary angles with a ratio of \( 4: 5 \), start by denoting the angles as \( 4x \) and \( 5x \). Since they are supplementary, their sum equals \( 180^\circ \). Thus, we can set up the equation: \[ 4x + 5x = 180 \] This simplifies to \( 9x = 180 \), and solving for \( x \) gives \( x = 20 \). Substituting back, the larger angle measures \( 5x = 5 \times 20 = 100^\circ \). So, the measure of the larger angle is \( 100^\circ \). To spice things up, here's a fun twist: Did you know that angles can be thought of like pizza? When angles are supplementary, they fit together perfectly to form a straight line—just like two slices of pizza that complete the pie! This concept of angles reminds us that math can be not just serious, but super relatable too! For those with an adventurous spirit, diving deeper into the world of angles can lead you to explore trigonometry, where these relationships get even more thrilling! Ever heard of the sine, cosine, and tangent? These functions can take your understanding of angles to new heights—literally! So grab a protractor, and let the exploration begin!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad