Simplification of surds Simplipy \( \frac{6 \sqrt{2 x^{8}}-2 \sqrt{8 x^{8}}}{\sqrt{8 x^{8}}} \) without the use of a cal
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify the expression \( \frac{6 \sqrt{2 x^{8}}-2 \sqrt{8 x^{8}}}{\sqrt{8 x^{8}}} \), let's break it down step by step. First, simplify the square roots: 1. \( \sqrt{8 x^{8}} = \sqrt{8} \cdot \sqrt{x^{8}} = \sqrt{4 \cdot 2} \cdot x^{4} = 2\sqrt{2} \cdot x^{4} \). Next, substitute \( \sqrt{8 x^{8}} \) back into the expression: \[ \frac{6 \sqrt{2 x^{8}} - 2(2\sqrt{2} x^{4})}{2\sqrt{2} x^{4}} \] Now simplify \( \sqrt{2 x^{8}} \): 2. \( \sqrt{2 x^{8}} = \sqrt{2} \cdot \sqrt{x^{8}} = \sqrt{2} \cdot x^{4} \). Substituting this into the expression gives: \[ \frac{6(\sqrt{2} x^{4}) - 4\sqrt{2} x^{4}}{2\sqrt{2} x^{4}} \] Now, factor out \( \sqrt{2} x^{4} \) from the numerator: \[ \frac{(6 - 4)\sqrt{2} x^{4}}{2\sqrt{2} x^{4}} = \frac{2\sqrt{2} x^{4}}{2\sqrt{2} x^{4}} = 1 \] So, the simplified expression is: \[ \boxed{1} \]