For each value below, enter the number correct to four decimal places. Suppose an arrow is shot upward on the moon with a velocity of \( 47 \mathrm{~m} / \mathrm{s} \), then its height in meters after \( t \) seconds is given by \( h(t)=47 t-0.83 t^{2} \). Find the average velocity over the given time intervals. [5, 6]: [5, 5.5]: [5, 5.1]: [5, 5.01]: [5, 5.001]:
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the average velocity over the given time intervals using the height function \( h(t) = 47t - 0.83t^2 \), we can apply the formula for average velocity over an interval \([a, b]\): \[ \text{Average Velocity} = \frac{h(b) - h(a)}{b - a} \] Let's calculate the average velocities for the time intervals specified: 1. **For the interval [5, 6]:** - \( h(5) = 47(5) - 0.83(5^2) = 235 - 20.75 = 214.25 \) - \( h(6) = 47(6) - 0.83(6^2) = 282 - 29.88 = 252.12 \) - Average Velocity = \( \frac{252.12 - 214.25}{6 - 5} = \frac{37.87}{1} = 37.8700 \) 2. **For the interval [5, 5.5]:** - \( h(5.5) = 47(5.5) - 0.83(5.5^2) = 258.5 - 25.3225 = 233.1775 \) - Average Velocity = \( \frac{233.1775 - 214.25}{5.5 - 5} = \frac{18.9275}{0.5} = 37.8550 \) 3. **For the interval [5, 5.1]:** - \( h(5.1) = 47(5.1) - 0.83(5.1^2) = 239.7 - 21.2773 = 218.4227 \) - Average Velocity = \( \frac{218.4227 - 214.25}{5.1 - 5} = \frac{4.1727}{0.1} = 41.7270 \) 4. **For the interval [5, 5.01]:** - \( h(5.01) = 47(5.01) - 0.83(5.01^2) = 235.47 - 20.8273 = 214.6427 \) - Average Velocity = \( \frac{214.6427 - 214.25}{5.01 - 5} = \frac{0.3927}{0.01} = 39.2700 \) 5. **For the interval [5, 5.001]:** - \( h(5.001) = 47(5.001) - 0.83(5.001^2) = 235.047 - 20.8301 = 214.2169 \) - Average Velocity = \( \frac{214.2169 - 214.25}{5.001 - 5} = \frac{-0.0331}{0.001} = -33.1000 \) So, the average velocities to four decimal places are: - **[5, 6]:** 37.8700 - **[5, 5.5]:** 37.8550 - **[5, 5.1]:** 41.7270 - **[5, 5.01]:** 39.2700 - **[5, 5.001]:** -33.1000