32 a Sketch the graph of \( y=\frac{1}{x^{2}}-4 \), showing clearly the coordinates of the points where the curve crosses the coordinate axes and stating the equations of the asymptotes. b The curve with \( y=\frac{1}{(x+k)^{2}}-4 \) passes through the origin. Find the two possible values of \( k \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To sketch the graph of \( y = \frac{1}{x^{2}} - 4 \), you start by finding the intersections with the axes. The curve crosses the y-axis at \( (0, -4) \) but note that the x-axis will not be crossed since \( \frac{1}{x^2} \) is always positive, rendering \( y \) negative for all \( x \neq 0 \). The asymptotes occur as \( x \to 0 \) (vertical asymptote) and as \( x \to \pm \infty \) (horizontal asymptote at \( y = -4 \)). Now for the second part, to find \( k \) when \( y = \frac{1}{(x+k)^{2}} - 4 \) passes through the origin \( (0,0) \), we set the equation to zero: \[ 0 = \frac{1}{(0+k)^{2}} - 4 \] This leads to: \[ 4 = \frac{1}{k^{2}} \] Rearranging gives \( k^2 = \frac{1}{4} \), or \( k = \frac{1}{2} \) or \( k = -\frac{1}{2} \). Hence, the two possible values of \( k \) are \( \frac{1}{2} \) and \( -\frac{1}{2} \).