Problem 9: Let \( f(x)=\ln (x) \) on the interval \( [1, e] \). . Find the value of \( c \) in \( (1, e) \) where \( f^{\prime}(c)=\frac{f(e)-f(1)}{e-1} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve for the value of \( c \) in the interval \( (1, e) \) where \( f^{\prime}(c)=\frac{f(e)-f(1)}{e-1} \), we start by calculating \( f(e) \) and \( f(1) \): 1. \( f(e) = \ln(e) = 1 \) 2. \( f(1) = \ln(1) = 0 \) Now, we compute the average rate of change: \[ \frac{f(e)-f(1)}{e-1} = \frac{1-0}{e-1} = \frac{1}{e-1} \] Next, we find the derivative of \( f(x) \): \[ f'(x) = \frac{1}{x} \] We want \( f'(c) = \frac{1}{e-1} \), so we set up the equation: \[ \frac{1}{c} = \frac{1}{e-1} \] Cross-multiplying gives: \[ e - 1 = c \] Thus, the value of \( c \) in the interval \( (1, e) \) is \[ c = e - 1. \]