Pregunta
10 The product of -4 and a number is greater than 12 . Which solution from the set makes an inequally represented by the statement true? \[ \left\{-6,-3, r^{-1}, 3,15,16,17\right\} \]
Ask by Flynn Cox. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The number \(-6\) satisfies the inequality \(-4 \times x > 12\).
Solución
To solve the inequality:
\[
-4 \times x > 12
\]
1. **Isolate \( x \):**
Divide both sides by \(-4\). Remember, dividing by a negative number reverses the inequality sign:
\[
x < \frac{12}{-4} \Rightarrow x < -3
\]
2. **Identify the solutions from the set \(\{-6, -3, r^{-1}, 3, 15, 16, 17\}\) that satisfy \( x < -3 \):**
- **\(-6\):** Yes, \(-6 < -3\)
- **\(-3\):** No, \(-3\) is not less than \(-3\)
- **\(r^{-1}\):** Without additional information about \( r \), we cannot determine if \( r^{-1} < -3 \)
- **\(3\), \(15\), \(16\), \(17\):** No, all these values are greater than \(-3\)
3. **Conclusion:**
The only definite solution from the set that satisfies the inequality \( x < -3 \) is \(-6\).
**Answer:** \(-6\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the inequality, we start with the expression representing the product of -4 and a number \( x \): \(-4x > 12\). Dividing by -4 (and flipping the inequality sign) gives \(x < -3\). Now we can look at the solution set \(\{-6, -3, r^{-1}, 3, 15, 16, 17\}\) and see which numbers are less than -3. Clearly, -6 is less than -3, making it a valid solution to the inequality. In contrast, -3 is not less than -3 and the other numbers all exceed this threshold. So, from the set provided, -6 is the only number that makes the inequality true!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium