Pregunta
upstudy study bank question image url

Determine the vertex form and the maximum or minimum value of the function. \[ f(x)=2 x^{2}+8 x+3 \] A \( f(x)=2(x+4)^{2}-13 \), the maximum value of \( f \) is -13 B \( f(x)=2(x+4)^{2}-13 \), the minimum value of \( f \) is -13 C \( f(x)=2(x+2)^{2}-5 \), the maximum value of \( f \) is -5 (D) \( f(x)=2(x+2)^{2}-5 \), the minimum value of \( f \) is -5

Ask by Romero Chadwick. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = 2x^{2} + 8x + 3 \) in vertex form is \( f(x) = 2(x + 2)^{2} - 5 \). This parabola opens upwards, so it has a minimum value of -5.

Solución

To determine the **vertex form** of the function \( f(x) = 2x^{2} + 8x + 3 \) and identify whether it has a **maximum or minimum** value, follow these steps: ### 1. **Convert to Vertex Form** The vertex form of a quadratic function is: \[ f(x) = a(x - h)^2 + k \] where \((h, k)\) is the vertex of the parabola. **Given Function:** \[ f(x) = 2x^{2} + 8x + 3 \] **Step-by-Step Conversion:** 1. **Factor out the coefficient of \(x^2\) from the first two terms:** \[ f(x) = 2(x^{2} + 4x) + 3 \] 2. **Complete the square inside the parentheses:** - Take half of the coefficient of \(x\): \(\frac{4}{2} = 2\) - Square it: \(2^2 = 4\) Add and subtract this square inside the parentheses: \[ f(x) = 2(x^{2} + 4x + 4 - 4) + 3 \] \[ f(x) = 2((x + 2)^2 - 4) + 3 \] 3. **Simplify the expression:** \[ f(x) = 2(x + 2)^2 - 8 + 3 \] \[ f(x) = 2(x + 2)^2 - 5 \] ### 2. **Identify Vertex and Determine Maximum or Minimum** - **Vertex:** \((-2, -5)\) - **Coefficient of \((x + 2)^2\):** \(2\) (positive) Since the coefficient is positive, the parabola **opens upwards**, indicating that the function has a **minimum** value. - **Minimum Value:** \(-5\) ### 3. **Conclusion** The correct vertex form and the nature of the extremum (minimum value) is: **(D)** \[ f(x) = 2(x + 2)^{2} - 5 \] **The minimum value of \( f \) is -5.** Answer: **(D) \( f(x)=2(x+2)^{2}-5 \), the minimum value of \( f \) is -5**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the vertex form and the maximum or minimum value for the function \( f(x) = 2x^2 + 8x + 3 \), we can complete the square. 1. Factor out the coefficient of \( x^2 \): \[ f(x) = 2(x^2 + 4x) + 3 \] 2. Complete the square: - Take half of the coefficient of \( x \) (which is 4), square it, and add/subtract it inside the bracket: \[ f(x) = 2(x^2 + 4x + 4 - 4) + 3 \] \[ f(x) = 2((x + 2)^2 - 4) + 3 \] 3. Simplify it: \[ f(x) = 2(x + 2)^2 - 8 + 3 \] \[ f(x) = 2(x + 2)^2 - 5 \] Now, we see that since the coefficient of \( (x + 2)^2 \) is positive (2), the function opens upwards, leading to a minimum value. The vertex form is \( f(x) = 2(x + 2)^2 - 5 \) and the minimum value is -5. Thus, the correct option is: **(D)** \( f(x) = 2(x + 2)^{2} - 5 \), the minimum value of \( f \) is -5. Did you know that completing the square not only helps in rewriting quadratic functions but also plays a key role in calculus? It allows you to find critical points, which are essential for optimization problems! Also, to further explore the beauty of quadratic functions, consider delving into their graphs. The parabolic shapes are not just math artifacts; they can describe real-life phenomena, like the path of a thrown ball or the design of suspension bridges where the arches take on a parabolic form!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad