Paper 2 - Calculators are allowed. 1. Mdm Farah baked an equal number of cupcakes and cookies. After she sold 32 cupcakes and 20 cookies, the number of cupcakes left was \( \frac{4}{7} \) of the number of cookies left. How many cookies did she bake at first?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Let's assume Mdm Farah baked \( x \) cupcakes and \( x \) cookies. After selling 32 cupcakes and 20 cookies, she has \( x - 32 \) cupcakes and \( x - 20 \) cookies left. According to the problem, the number of cupcakes left is \( \frac{4}{7} \) of the number of cookies left, which gives us the equation: \[ x - 32 = \frac{4}{7}(x - 20) \] To eliminate the fraction, multiply both sides by 7: \[ 7(x - 32) = 4(x - 20) \] This simplifies to: \[ 7x - 224 = 4x - 80 \] Rearranging gives us: \[ 7x - 4x = 224 - 80 \\ 3x = 144 \\ x = 48 \] Thus, Mdm Farah initially baked 48 cookies.