Pregunta
upstudy study bank question image url

In \( \triangle P Q R, P Q=4 \mathrm{~cm}, P R=8 \mathrm{~cm} \) and \( R T=6 \) cm . Find (i) the area of \( \triangle P Q R \) (ii) the length of \( Q S \).

Ask by Bird Park. in India
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area of \( \triangle PQR \) is 12 cm², and the length of \( QS \) is \( 2\sqrt{7} - 4 \) cm.

Solución

To solve the problem, we'll analyze the given information step by step. ### Given: - Triangle \( PQR \) with sides: - \( PQ = 4 \) cm - \( PR = 8 \) cm - \( RT = 6 \) cm, where \( RT \) is the altitude from vertex \( R \) to side \( PQ \). ### (i) Finding the Area of \( \triangle PQR \): The area of a triangle can be calculated using the formula: \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] Here, we can take \( PQ \) as the base and \( RT \) as the height. \[ \text{Area} = \frac{1}{2} \times 4 \times 6 = 12 \text{ cm}^2 \] ### (ii) Finding the Length of \( QS \): Assume \( S \) is the foot of the perpendicular from \( R \) to \( PQ \). To find \( QS \), we'll use coordinate geometry. 1. **Coordinate Setup:** - Place point \( P \) at \( (0, 0) \). - Point \( Q \) is at \( (4, 0) \). - Since \( RT = 6 \) cm is the altitude, point \( R \) lies somewhere above the base \( PQ \). Let’s denote \( R \) as \( (x, 6) \). 2. **Using the Distance Formula:** \[ PR = \sqrt{x^2 + 6^2} = 8 \] \[ x^2 + 36 = 64 \Rightarrow x^2 = 28 \Rightarrow x = 2\sqrt{7} \] So, \( R \) is at \( (2\sqrt{7}, 6) \). 3. **Finding \( S \):** The foot \( S \) of the perpendicular from \( R \) to \( PQ \) is directly below \( R \) on the \( x \)-axis, so \( S \) is at \( (2\sqrt{7}, 0) \). 4. **Calculating \( QS \):** \[ QS = |Q_x - S_x| = |4 - 2\sqrt{7}| \] Since \( 2\sqrt{7} \approx 5.291 \) cm, \[ QS \approx 5.291 - 4 = 1.291 \text{ cm} \] Therefore, \[ QS = 2\sqrt{7} - 4 \text{ cm} \] ### **Final Answers:** 1. **Area of \( \triangle PQR \)**: \( 12 \) cm² 2. **Length of \( QS \)**: \( 2\sqrt{7} - 4 \) cm ### **Summary:** - **(i)** The area of \( \triangle PQR \) is **12 cm²**. - **(ii)** The length of \( QS \) is **\( 2\sqrt{7} - 4 \) cm**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the area of \( \triangle PQR \), we can use Heron's formula. First, we need to calculate the semi-perimeter \( s \): \[ s = \frac{PQ + PR + QR}{2} \] Since we do not know \( QR \) directly, but we can consider \( RT \) as part of it if we denote \( QR = RT + TS = 6 + TS \), we will need more information to solve for \( TS \). Once we calculate \( QR \) correctly, we can proceed. For now, let's assume \( QR \) is needed and let's denote the area of the triangle \( A \). The formula gives: \[ A = \sqrt{s(s - PQ)(s - PR)(s - QR)} \] As for \( QS \), if \( S \) is the point on line \( PR \) such that \( QR \perp PR \), we can apply the Pythagorean theorem or trigonometric ratios to find \( QS \) once \( QR \) is determined. In either case, gathering accurate side lengths and angles given would be crucial, so clarifying the diagram or context will help immensely!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad