In \( \triangle P Q R, P Q=4 \mathrm{~cm}, P R=8 \mathrm{~cm} \) and \( R T=6 \) cm . Find (i) the area of \( \triangle P Q R \) (ii) the length of \( Q S \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the area of \( \triangle PQR \), we can use Heron's formula. First, we need to calculate the semi-perimeter \( s \): \[ s = \frac{PQ + PR + QR}{2} \] Since we do not know \( QR \) directly, but we can consider \( RT \) as part of it if we denote \( QR = RT + TS = 6 + TS \), we will need more information to solve for \( TS \). Once we calculate \( QR \) correctly, we can proceed. For now, let's assume \( QR \) is needed and let's denote the area of the triangle \( A \). The formula gives: \[ A = \sqrt{s(s - PQ)(s - PR)(s - QR)} \] As for \( QS \), if \( S \) is the point on line \( PR \) such that \( QR \perp PR \), we can apply the Pythagorean theorem or trigonometric ratios to find \( QS \) once \( QR \) is determined. In either case, gathering accurate side lengths and angles given would be crucial, so clarifying the diagram or context will help immensely!