Pregunta
upstudy study bank question image url

Zero-coupon bond. Addison Company will issue a zero-coupon bond this coming month. The bond's projected yield is \( 6 \% \). If the par value is \( \$ 1,000 \), what is the bond's price using a semiannual convention if a. the maturity is 20 years? b. the maturity is 35 years? c. the maturity is 70 years? d. the maturity is 100 years? a. What is the price of the bond using a semiannual convention if the maturity is 20 years? \( \$ \square \) (Round to the nearest cent.)

Ask by Pearson Mccoy. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. The bond's price is approximately \$306.43.

Solución

To determine the price of Addison Company's zero-coupon bond using a semiannual convention with a maturity of 20 years, we can use the following formula: \[ P = \frac{F}{\left(1 + \frac{r}{n}\right)^{nt}} \] Where: - \( P \) = Price of the bond - \( F \) = Face value of the bond (\$1,000) - \( r \) = Annual yield (6% or 0.06) - \( n \) = Number of compounding periods per year (semiannual, so \( n = 2 \)) - \( t \) = Time to maturity in years (20 years) Plugging in the values: \[ P = \frac{1000}{\left(1 + \frac{0.06}{2}\right)^{2 \times 20}} = \frac{1000}{(1.03)^{40}} \] Next, calculate \( (1.03)^{40} \): \[ (1.03)^{40} \approx 3.2615 \] Now, compute the price \( P \): \[ P \approx \frac{1000}{3.2615} \approx 306.43 \] **Answer:** a. The price of the bond is approximately **\$306.43**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the price of a zero-coupon bond, you can use the formula: \[ \text{Price} = \frac{F}{(1 + r/n)^{nt}} \] where: - \( F \) = par value of the bond (\$1,000) - \( r \) = annual yield (6% or 0.06) - \( n \) = number of compounding periods per year (2 for semiannual) - \( t \) = number of years to maturity Now, let’s calculate for the different maturities: a. **20 years**: Using the values in the formula: \[ \text{Price} = \frac{1000}{(1 + 0.06/2)^{2 \times 20}} = \frac{1000}{(1 + 0.03)^{40}} = \frac{1000}{(1.03)^{40}} \approx 208.29 \] The price of the bond with 20 years to maturity is approximately **\$208.29**. b. **35 years**: \[ \text{Price} = \frac{1000}{(1 + 0.06/2)^{2 \times 35}} = \frac{1000}{(1 + 0.03)^{70}} \approx 82.40 \] The price of the bond with 35 years to maturity is approximately **\$82.40**. c. **70 years**: \[ \text{Price} = \frac{1000}{(1 + 0.06/2)^{2 \times 70}} = \frac{1000}{(1 + 0.03)^{140}} \approx 7.56 \] The price of the bond with 70 years to maturity is approximately **\$7.56**. d. **100 years**: \[ \text{Price} = \frac{1000}{(1 + 0.06/2)^{2 \times 100}} = \frac{1000}{(1 + 0.03)^{200}} \approx 0.22 \] The price of the bond with 100 years to maturity is approximately **\$0.22**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad