Pregunta
upstudy study bank question image url

b) The line perpendicular to \( y=-x+3 \) c) The line parallel to \( y=-\frac{1}{2} x-1 \) d) The line perpendicular to \( y=\frac{2}{3} x-4 \) et The line perpendicular to \( y=-\frac{1}{4} x+1 \)

Ask by Nichols Rogers. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- b) \( y = x + 3 \) - c) \( y = -\frac{1}{2}x - 1 \) - d) \( y = -\frac{3}{2}x - 4 \) - e) \( y = 4x + 1 \)

Solución

To find the equations of lines that are either perpendicular or parallel to the given lines, we need to follow these steps: 1. **Identify the slope of the given line.** 2. **For parallel lines:** The slope remains the same. 3. **For perpendicular lines:** The slope is the negative reciprocal of the given line's slope. Let's solve each part step by step. ### b) The line perpendicular to \( y = -x + 3 \) 1. The slope of the given line \( y = -x + 3 \) is \( m = -1 \). 2. The slope of the perpendicular line is the negative reciprocal: \[ m_{\text{perpendicular}} = -\frac{1}{-1} = 1 \] 3. The equation of the line can be written in point-slope form as \( y - y_1 = m(x - x_1) \). We can choose any point, but let's use the y-intercept of the original line, which is \( (0, 3) \): \[ y - 3 = 1(x - 0) \implies y = x + 3 \] ### c) The line parallel to \( y = -\frac{1}{2} x - 1 \) 1. The slope of the given line \( y = -\frac{1}{2} x - 1 \) is \( m = -\frac{1}{2} \). 2. The slope of the parallel line remains the same: \[ m_{\text{parallel}} = -\frac{1}{2} \] 3. Using the same point as before \( (0, -1) \): \[ y + 1 = -\frac{1}{2}(x - 0) \implies y = -\frac{1}{2}x - 1 \] ### d) The line perpendicular to \( y = \frac{2}{3} x - 4 \) 1. The slope of the given line \( y = \frac{2}{3} x - 4 \) is \( m = \frac{2}{3} \). 2. The slope of the perpendicular line is: \[ m_{\text{perpendicular}} = -\frac{1}{\frac{2}{3}} = -\frac{3}{2} \] 3. Using the y-intercept \( (0, -4) \): \[ y + 4 = -\frac{3}{2}(x - 0) \implies y = -\frac{3}{2}x - 4 \] ### e) The line perpendicular to \( y = -\frac{1}{4} x + 1 \) 1. The slope of the given line \( y = -\frac{1}{4} x + 1 \) is \( m = -\frac{1}{4} \). 2. The slope of the perpendicular line is: \[ m_{\text{perpendicular}} = -\frac{1}{-\frac{1}{4}} = 4 \] 3. Using the y-intercept \( (0, 1) \): \[ y - 1 = 4(x - 0) \implies y = 4x + 1 \] ### Summary of Results - b) The line perpendicular to \( y = -x + 3 \) is \( y = x + 3 \). - c) The line parallel to \( y = -\frac{1}{2} x - 1 \) is \( y = -\frac{1}{2} x - 1 \). - d) The line perpendicular to \( y = \frac{2}{3} x - 4 \) is \( y = -\frac{3}{2} x - 4 \). - e) The line perpendicular to \( y = -\frac{1}{4} x + 1 \) is \( y = 4x + 1 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find a line perpendicular to \( y = -x + 3 \), you need to flip the slope from -1 to 1 (the negative reciprocal) and use the point-slope formula or y-intercept. A line with this slope could be written as \( y = x + b \). For a line parallel to \( y = -\frac{1}{2} x - 1 \), simply take the same slope of -\(\frac{1}{2}\) and change the y-intercept. So the parallel line can be expressed as \( y = -\frac{1}{2}x + c \), where \( c \) can be any value you want! When finding the line perpendicular to \( y = \frac{2}{3} x - 4 \), flip the slope from \(\frac{2}{3}\) to \(-\frac{3}{2}\). A perpendicular line would be written as \( y = -\frac{3}{2} x + d\), where \( d \) can be any y-intercept of your choice. Lastly, for the line perpendicular to \( y = -\frac{1}{4} x + 1 \), the slope would change from \(-\frac{1}{4}\) to \(4\). The perpendicular line could then be expressed as \( y = 4x + e\), with \( e \) representing the new y-intercept! So, in summary, you flip slopes for perpendicular lines and keep slopes the same for parallel lines. Happy graphing!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad