Pregunta
upstudy study bank question image url

Part I: Workout each of the following question with necessary steps clearly ad neatly 1. Use the principle of mathematical induction to prove that \( 6^{n}-1 \) is divisible by 5 , for all integers \( n \geq 1 \). ( 5 points) 2. If the complex number \( x+y i=\frac{c+i}{c-i} \), where \( x \) and \( y \) are real, prove that \( x^{2}+y^{2}=1 \) and \( \frac{y}{2 x}=\frac{c}{c^{2}-1} \). ( 5 points) 3. Find the fourth roots of a complex number \( z=-1+\sqrt{3} i \). 4. Show that the function \( f: Z \rightarrow Z \) given by \( f(n)=2 n+1 \) is not a one-to-one correspondence function. 5. Find the inverse of the function \( y=\log _{e} x+\sqrt{x^{2}+1} \) 6. Find the eccentricity, length of the transverse axis, length of the conjugate axis, vertices, foci, equations of the directrices, and length of the latus rectum of the hyperbola: ( 5 points ) (a) \( x^{2}-y^{2}=1 \) (b) \( 4 x^{2}-9 y^{2}=36 \)

Ask by Hodges Martinez. in Ethiopia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 1:** \( 6^{n} - 1 \) is divisible by 5 for all integers \( n \geq 1 \). **Problem 2:** If \( x + yi = \frac{c + i}{c - i} \), then: 1. \( x^{2} + y^{2} = 1 \) 2. \( \frac{y}{2x} = \frac{c}{c^{2} - 1} \) *For Problems 3 to 6, solutions are available upon request.*

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

1. To prove that \( 6^{n}-1 \) is divisible by 5 for all \( n \geq 1 \) using mathematical induction, we start with the base case \( n = 1 \): \( 6^1 - 1 = 5 \) which is divisible by 5. Now, assume it's true for some integer \( k \), i.e., \( 6^k - 1 \) is divisible by 5. For \( n = k + 1 \): \( 6^{k+1} - 1 = 6 \cdot 6^k - 1 = 5 \cdot 6^k + 6^k - 1 \). Since \( 5 \cdot 6^k \) is divisible by 5, we can conclude that \( 6^{k+1} - 1 \) is also divisible by 5. Therefore, by induction, \( 6^n - 1 \) is divisible by 5 for all \( n \geq 1 \. 2. Given \( x + yi = \frac{c+i}{c-i} \), we can multiply the numerator and denominator by the conjugate of the denominator: \( x + yi = \frac{(c+i)(c+i)}{(c-i)(c+i)} = \frac{c^2 + 2ci - 1}{c^2 + 1} \) thus, \( x = \frac{c^2 - 1}{c^2 + 1}, y = \frac{2c}{c^2 + 1} \). To show \( x^2 + y^2 = 1 \): Substitute \( x \) and \( y \) into the equation, simplify, and verify that it equals 1. Then, to prove \( \frac{y}{2x} = \frac{c}{c^{2}-1} \): Substitute \( x \) and \( y \) back into the equation and simplify to match the right side. 3. To find the fourth roots of the complex number \( z = -1 + \sqrt{3} i \), first express \( z \) in polar form: The modulus \( r = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2 \) and the argument \( \theta = \tan^{-1}(-\sqrt{3}/-1) = \frac{2\pi}{3} \). The fourth roots will then be given by \( \sqrt[4]{2} \text{cis} \left( \frac{2\pi/3 + 2k\pi}{4} \right) \) for \( k = 0, 1, 2, 3 \). Therefore, calculate to find the four unique root angles. 4. To show that \( f: \mathbb{Z} \rightarrow \mathbb{Z} \) given by \( f(n) = 2n + 1 \) is not one-to-one, assume \( f(a) = f(b) \). This means \( 2a + 1 = 2b + 1\). Subtracting gives \( 2a = 2b \) or \( a = b \), which confirms it is one-to-one. However, it is not a correspondence function as it does not cover all integers (e.g., \( f(n) \) only produces odd integers), lacking elements in the codomain (even integers) indicating it is not onto. 5. To find the inverse of \( y = \log_e x + \sqrt{x^2 + 1} \), first, isolate \( \log_e x \): Rearranging, you get: \( \log_e x = y - \sqrt{x^2 + 1} \), leading to \( x = e^{y - \sqrt{x^2 + 1}} \). Squaring both sides and solving for \( x \) yields the inverse function, \( x \) in terms of \( y \). 6. (a) For the hyperbola \( x^2 - y^2 = 1 \): - Eccentricity \( e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{2} \) where \( a = 1 \) and \( b = 1 \). - Length of the transverse axis = 2a = 2, length of the conjugate axis = 2b = 2. - Vertices at \(

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad