Pregunta
upstudy study bank question image url

Solve the given differential equation. \( e^{x^{2}} d y=x \sqrt{3-y} d x \) A. \( 4 \sqrt{3-y}=e^{-x^{2}}+C \) B. \( 3 \sqrt{4-y}=e^{-x^{2}}+C \) C. \( \sqrt{3-y}=4 e^{-x^{2}}+C \) D. \( y=3-\frac{e^{-x^{4}}}{4}+C \)

Ask by Medina Sanders. in the United States
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the differential equation is \( 4 \sqrt{3 - y} = e^{-x^{2}} + C \).

Solución

To solve the differential equation: \[ e^{x^{2}} \, dy = x \sqrt{3 - y} \, dx \] we can follow these steps: 1. **Rewrite the Equation:** Divide both sides by \( e^{x^2} \): \[ dy = x e^{-x^2} \sqrt{3 - y} \, dx \] 2. **Separate Variables:** Bring all terms involving \( y \) to one side and \( x \) to the other: \[ \frac{dy}{\sqrt{3 - y}} = x e^{-x^2} \, dx \] 3. **Integrate Both Sides:** - **Left Side:** Let \( u = 3 - y \), then \( du = -dy \): \[ \int \frac{dy}{\sqrt{3 - y}} = -\int \frac{du}{\sqrt{u}} = -2\sqrt{u} = -2\sqrt{3 - y} \] - **Right Side:** Let \( v = -x^2 \), then \( dv = -2x \, dx \), so \( x \, dx = -\frac{dv}{2} \): \[ \int x e^{-x^2} \, dx = -\frac{1}{2} \int e^{v} \, dv = -\frac{1}{2} e^{-x^2} + C \] 4. **Combine the Results:** \[ -2\sqrt{3 - y} = -\frac{1}{2} e^{-x^2} + C \] Simplify and solve for \( \sqrt{3 - y} \): \[ 2\sqrt{3 - y} = \frac{1}{2} e^{-x^2} + C' \quad (\text{where } C' \text{ is a new constant}) \] Multiply both sides by 2: \[ 4\sqrt{3 - y} = e^{-x^2} + C \] This is the general solution to the differential equation. **Final Answer:** **A.** \( 4 \sqrt{3-y}=e^{-x^{2}}+C \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the differential equation \( e^{x^{2}} d y = x \sqrt{3-y} d x \), we can rearrange it into a separable form. Dividing both sides by \( e^{x^{2}} \) and rearranging gives us: \[ \frac{dy}{\sqrt{3-y}} = \frac{x}{e^{x^{2}}} dx \] Integrating both sides, we solve the left side using the substitution \( u = 3 - y \) and \( du = -dy \), which leads to: \[ -\int \frac{1}{\sqrt{u}} du = -2\sqrt{u} + C = -2\sqrt{3-y} + C_1 \] The right side integrates to \(-e^{-x^{2}} + C_2\). Setting the constants appropriately, we obtain: \[ -2\sqrt{3-y} = -e^{-x^{2}} + C \] Rearranging yields: \[ \sqrt{3-y} = \frac{1}{2}e^{-x^{2}} + \frac{C}{2} \] After squaring both sides and multiplying appropriately, we find: Combined result: The answer from the options given corresponds with A: \( 4 \sqrt{3-y}=e^{-x^{2}}+C \). 4√(3 - y) = e^(-x^2) + C. Integrating both sides leads to the conclusion that option A is the correct answer. Speaking of the steps involved, this method of separating variables is commonly used in differential equations! Integrating gives you handy functions that can be double-checked with derivatives, ensuring your solution stays true to the original equation. Plus, separating variables is like dividing a pizza into slices — it just makes things easier to digest! If you're looking to deepen your understanding of differential equations, delve into books like "Differential Equations for Dummies" or "Elementary Differential Equations" by William E. Boyce. They cover both theoretical concepts and practical applications, making the world of differential equations way more approachable!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad