Pregunta
upstudy study bank question image url

Solve the following Word Problems. Write equations and then solve the equations. Some of the questions were adapted from (Seeliger \& Mouton, n.d.-a, p. 99) and (Loots et al., 2011, p. 55) and (Seeliger \& Mouton, n.d.-b, p. 34) and (Bothma, 2015, p. 175). a. A tank is \( \frac{2}{3} \) full of water. If 35 litres are tapped off, the tank is \( \frac{1}{6} \) full. Determine the volume of water in a full tank.

Ask by John May. in South Africa
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The full tank holds 70 liters of water.

Solución

Sure, let's solve the problem step by step by setting up and solving the appropriate equations. ### **Problem Statement** A tank is \( \frac{2}{3} \) full of water. If 35 liters are tapped off, the tank is \( \frac{1}{6} \) full. Determine the volume of water in a full tank. ### **Step 1: Define the Variable** Let: - \( V \) = Total volume of the tank when it's completely full (in liters). ### **Step 2: Express the Given Information in Terms of \( V \)** 1. **Initial Volume of Water:** - The tank is \( \frac{2}{3} \) full. - Volume of water initially = \( \frac{2}{3}V \). 2. **Volume After Tapping Off 35 Liters:** - After removing 35 liters, the tank becomes \( \frac{1}{6} \) full. - Volume of water after tapping off = \( \frac{1}{6}V \). ### **Step 3: Set Up the Equation** The difference between the initial volume and the volume after tapping off 35 liters should equal 35 liters: \[ \frac{2}{3}V - 35 = \frac{1}{6}V \] ### **Step 4: Solve the Equation for \( V \)** 1. **Subtract \( \frac{1}{6}V \) from both sides to isolate terms with \( V \):** \[ \frac{2}{3}V - \frac{1}{6}V = 35 \] 2. **Find a common denominator to combine the terms:** \[ \frac{4}{6}V - \frac{1}{6}V = 35 \] \[ \frac{3}{6}V = 35 \] \[ \frac{1}{2}V = 35 \] 3. **Multiply both sides by 2 to solve for \( V \):** \[ V = 35 \times 2 \] \[ V = 70 \, \text{liters} \] ### **Conclusion** The volume of water in a full tank is **70 liters**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's break down the problem in a systematic way. Let the total volume of the tank be \( V \) litres. Initially, the tank is \( \frac{2}{3} \) full, meaning it has \( \frac{2}{3} V \) litres of water. After tapping off 35 litres, the water left in the tank is \( \frac{2}{3} V - 35 \). According to the problem, this amount equals \( \frac{1}{6} V \): \[ \frac{2}{3} V - 35 = \frac{1}{6} V \] Now, let's solve for \( V \). First, we'll eliminate the fractions by finding a common denominator, which is 6 in this case. Multiplying each term by 6 gives us: \[ 6 \left( \frac{2}{3} V \right) - 6(35) = 6 \left( \frac{1}{6} V \right) \] This simplifies to: \[ 4V - 210 = V \] Rearranging the equation, we have: \[ 4V - V = 210 \] \[ 3V = 210 \] Now, divide both sides by 3: \[ V = \frac{210}{3} = 70 \] Thus, the volume of water in a full tank is **70 litres**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad