Prove that:- \( \left[\frac{-1}{2}\right]+\frac{1}{3}=\frac{1}{3}+\left[\frac{-1}{2}\right] \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To prove the equation \( \left[\frac{-1}{2}\right]+\frac{1}{3}=\frac{1}{3}+\left[\frac{-1}{2}\right] \), we first calculate \( \left[\frac{-1}{2}\right] \). The floor function, denoted by \( \left[x\right] \), is defined as the greatest integer less than or equal to \( x \). Thus, \( \left[\frac{-1}{2}\right] = -1 \) because \(-1\) is the largest integer that is less than \(-0.5\). Now, substituting it back into the equation, we have: 1. The left-hand side: \[ \left[\frac{-1}{2}\right] + \frac{1}{3} = -1 + \frac{1}{3} = -\frac{3}{3} + \frac{1}{3} = -\frac{2}{3} \] 2. The right-hand side: \[ \frac{1}{3} + \left[\frac{-1}{2}\right] = \frac{1}{3} - 1 = \frac{1}{3} - \frac{3}{3} = -\frac{2}{3} \] Since both sides equal \(-\frac{2}{3}\), we have proved that: \[ \left[\frac{-1}{2}\right]+\frac{1}{3}=\frac{1}{3}+\left[\frac{-1}{2}\right] \]