Pregunta
upstudy study bank question image url

7. Which relation is a function? \( \begin{array}{l}\text { (O) A. }(2,7),(6,5),(4,4),(3,3),(2,1) \\ \text { O B. }(1,1),(2,2),(3,3),(4,4),(5,8) \\ \text { O C. }(9,-2),(9,3),(4,-2),(4,2),(0,0) \\ \text { O D. }(1,0),(3,0),(1,1),(3,1),(1,3)\end{array} \)

Ask by Blake Sherman. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**B.** \((1,1), (2,2), (3,3), (4,4), (5,8)\) is a function.

Solución

To determine which relation is a function, we need to ensure that each input (the first element of each ordered pair) is associated with exactly one output (the second element of each ordered pair). Let's evaluate each option: **A.** \((2,7), (6,5), (4,4), (3,3), (2,1)\) - **Input 2** is associated with both 7 and 1. - **Conclusion:** Not a function (since input 2 has multiple outputs). **B.** \((1,1), (2,2), (3,3), (4,4), (5,8)\) - Each input \(1, 2, 3, 4, 5\) is associated with exactly one output. - **Conclusion:** This is a function. **C.** \((9,-2), (9,3), (4,-2), (4,2), (0,0)\) - **Input 9** is associated with both -2 and 3. - **Input 4** is associated with both -2 and 2. - **Conclusion:** Not a function (since inputs 9 and 4 have multiple outputs). **D.** \((1,0), (3,0), (1,1), (3,1), (1,3)\) - **Input 1** is associated with 0, 1, and 3. - **Input 3** is associated with 0 and 1. - **Conclusion:** Not a function (since inputs 1 and 3 have multiple outputs). **Final Answer:** **B.** \((1,1), (2,2), (3,3), (4,4), (5,8)\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

A function is a special type of relation where each input (or x-value) corresponds to exactly one output (or y-value). In the options given, both A and B are functions because no x-value repeats. However, options C and D fail the test: they have repeated x-values with different corresponding y-values, making them not functions. So, in this case, A and B are the winners! One fun fact about functions is that the concept dates back to the works of mathematicians like René Descartes and Leonhard Euler in the 17th and 18th centuries. They laid the groundwork for the formal definitions we use today, demonstrating how functions could be represented graphically and algebraically — a pivotal moment that transformed modern mathematics. For anyone looking to dive deeper into this topic, there’s a wealth of resources available! Check out “The Art of Problem Solving: Precalculus” by Richard Rusczyk for a playful approach to understanding functions. Online platforms like Khan Academy also offer engaging videos and exercises that can reinforce these concepts in a fun and interactive way!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad