Pregunta
\( \overline{S T} \) has endpoints at \( S(0,19) \) and \( T(1,1) \). Find the midpoint \( M \) of \( \bar{S} \) Write the coordinates as decimals or integers. \( M=(\square, \square) \)
Ask by Fitzgerald Best. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( M = (0.5, 10) \)
Solución
To find the midpoint \( M \) of the line segment \( \overline{ST} \) with endpoints \( S(0, 19) \) and \( T(1, 1) \), you can use the midpoint formula:
\[
M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\]
Plugging in the coordinates of \( S \) and \( T \):
\[
M = \left( \frac{0 + 1}{2}, \frac{19 + 1}{2} \right) = \left( \frac{1}{2}, \frac{20}{2} \right) = (0.5, 10)
\]
**Answer:**
\( M = (0.5,\ 10) \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the midpoint \( M \) of the line segment \( \overline{ST} \), you can use the midpoint formula: \[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \] Substituting the coordinates of points \( S(0, 19) \) and \( T(1, 1) \): \[ M_x = \frac{0 + 1}{2} = \frac{1}{2} = 0.5 \] \[ M_y = \frac{19 + 1}{2} = \frac{20}{2} = 10 \] Therefore, the midpoint \( M \) is: \[ M = (0.5, 10) \] So, \( M=(0.5, 10) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium