Pregunta
upstudy study bank question image url

CEOMETRY What is the area of a regular heptagon with a side length of 8 in . and an apothem of 8.3 in.? Round to the nearest whole number. \( 2232 \mathrm{in.}^{2} \)

Ask by Schwartz Adkins. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area of the regular heptagon is approximately 232 square inches.

Solución

To find the area of a regular heptagon (a seven-sided polygon) with a given side length and apothem, you can use the following formula: \[ \text{Area} = \frac{1}{2} \times \text{Perimeter} \times \text{Apothem} \] Let's break down the steps: 1. **Calculate the Perimeter:** The perimeter \( P \) of a regular heptagon with side length \( s \) is: \[ P = 7 \times s = 7 \times 8\ \text{in} = 56\ \text{in} \] 2. **Use the Area Formula:** With the apothem \( a = 8.3\ \text{in} \), plug the values into the area formula: \[ \text{Area} = \frac{1}{2} \times 56\ \text{in} \times 8.3\ \text{in} = 28 \times 8.3\ \text{in}^2 = 232.4\ \text{in}^2 \] 3. **Round to the Nearest Whole Number:** \[ \text{Area} \approx 232\ \text{in}^2 \] **Conclusion:** The area of the regular heptagon is approximately **232 square inches**. It seems there might have been a miscalculation in your initial answer of \( 2232\ \text{in}^2 \). The correct area, based on the given measurements, is **232 square inches**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the area of a regular heptagon, you can use the formula: Area = (1/2) × Perimeter × Apothem. In this case, the perimeter is 7 times the side length (7 × 8 = 56 in). Plugging the values into the formula gives you: Area = (1/2) × 56 × 8.3, which equals approximately 2326 in². Rounding to the nearest whole number gives you an area of 2326 in². Did you know that ancient civilizations, like the Greeks, were fascinated by polygons? Regular heptagons were not only studied for their mathematical properties but also for their aesthetic qualities in art and architecture. They often used such shapes to create harmonious designs in their structures, showcasing the blend of mathematics and beauty that continues to inspire us today.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad