Pregunta
upstudy study bank question image url

Use any method to evaluate the integral. \( \int \frac{x d x}{\sqrt{64 x^{2}-1}} \)

Ask by Beck Greene. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral \( \int \frac{x}{\sqrt{64x^2-1}}dx \) equals \( \frac{\sqrt{64x^2-1}}{64} + C \).

Solución

Calculate the integral \( \int \frac{x}{\sqrt{64x^2-1}}dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{x}{\sqrt{64x^{2}-1}} dx\) - step1: Rewrite the expression: \(\int \frac{x}{\left(64x^{2}-1\right)^{\frac{1}{2}}} dx\) - step2: Use the substitution \(dx=\frac{1}{128x} dt\) to transform the integral\(:\) \(\int \frac{x}{\left(64x^{2}-1\right)^{\frac{1}{2}}}\times \frac{1}{128x} dt\) - step3: Simplify: \(\int \frac{1}{128\left(64x^{2}-1\right)^{\frac{1}{2}}} dt\) - step4: Use the substitution \(t=64x^{2}\) to transform the integral\(:\) \(\int \frac{1}{128\left(t-1\right)^{\frac{1}{2}}} dt\) - step5: Rewrite the expression: \(\int \frac{1}{128}\times \frac{1}{\left(t-1\right)^{\frac{1}{2}}} dt\) - step6: Use properties of integrals: \(\frac{1}{128}\times \int \frac{1}{\left(t-1\right)^{\frac{1}{2}}} dt\) - step7: Use the substitution \(dt=1 dv\) to transform the integral\(:\) \(\frac{1}{128}\times \int \frac{1}{\left(t-1\right)^{\frac{1}{2}}}\times 1 dv\) - step8: Simplify: \(\frac{1}{128}\times \int \frac{1}{\left(t-1\right)^{\frac{1}{2}}} dv\) - step9: Use the substitution \(v=t-1\) to transform the integral\(:\) \(\frac{1}{128}\times \int \frac{1}{v^{\frac{1}{2}}} dv\) - step10: Evaluate the integral: \(\frac{1}{128}\times \frac{v^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\) - step11: Simplify: \(\frac{1}{128}\times \frac{v^{\frac{1}{2}}}{\frac{1}{2}}\) - step12: Multiply the terms: \(\frac{v^{\frac{1}{2}}}{128\times \frac{1}{2}}\) - step13: Multiply the terms: \(\frac{v^{\frac{1}{2}}}{64}\) - step14: Substitute back: \(\frac{\left(t-1\right)^{\frac{1}{2}}}{64}\) - step15: Substitute back: \(\frac{\left(64x^{2}-1\right)^{\frac{1}{2}}}{64}\) - step16: Simplify: \(\frac{\sqrt{64x^{2}-1}}{64}\) - step17: Add the constant of integral C: \(\frac{\sqrt{64x^{2}-1}}{64} + C, C \in \mathbb{R}\) The integral of \( \frac{x}{\sqrt{64x^2-1}} \) with respect to \( x \) is \( \frac{\sqrt{64x^2-1}}{64} + C \), where \( C \) is an arbitrary constant.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To evaluate the integral \( \int \frac{x \, dx}{\sqrt{64 x^{2}-1}} \), we can use the substitution method. Let \( u = 64x^2 - 1 \). Then, we have \( du = 128x \, dx \) or \( dx = \frac{du}{128x} \). Now, we need to express \( x \) in terms of \( u \): From our substitution: \[ x^2 = \frac{u + 1}{64} \implies x = \frac{\sqrt{u + 1}}{8}. \] Next, substitute everything back into the integral. The integral becomes: \[ \int \frac{x \, dx}{\sqrt{u}} = \int \frac{\frac{\sqrt{u + 1}}{8} \cdot \frac{du}{128x}}{\sqrt{u}}. \] The \( x \) in the denominator simplifies with our expression for \( x \), and thus the integral can be transformed back into a more workable form. However, an easier approach might be direct from a standard integral that resembles our structure. Using the fact that: \[ \int \frac{x \, dx}{\sqrt{64x^2 - 1}} = \frac{1}{64} \sqrt{64x^2 - 1} + C. \] So the final answer is: \[ \frac{1}{64} \sqrt{64x^2 - 1} + C. \]

preguntas relacionadas

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad