Pregunta
upstudy study bank question image url

10. For a "One Sample \( Z^{\prime \prime} \) test, you will first need to find the population standard deviation sigma \( (\sigma) \). The population standard deviation for each of the three possible variables is listed below. SELECT the sigma value for the variable you chose (Choose one): a. Overall Unemployment Rate 2023 Sigma: \( 5.044 \% \) b. Female Unemployment Rate 2023 Sigma: \( 4.929 \% \) c. Male Unemployment Rate 2023 Sigma: \( 4.617 \% \) down each of the following descriptive statistics. Sample Mean ( \( \bar{x} \) ): IEnter vour answer here.] d Sample Z Test" tab in the "Statistics Toolbox". Then Sample Standard Deviation (s): [Enter your answer here.] Minimum: [Enter your answer here.]

Ask by Reeves Alexander. in the United States
Jan 16,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To perform the One Sample \( Z^{\prime \prime} \) test, select the population standard deviation (\(\sigma\)) for the chosen variable. For the Overall Unemployment Rate 2023, \(\sigma = 5.044\%\). Next, calculate the sample mean (\(\bar{x}\)), sample standard deviation (s), and minimum value from your sample data.

Solución

To solve this problem, we need to follow these steps: 1. **Select a variable and its corresponding population standard deviation (\(\sigma\)).** 2. **Determine the sample mean (\(\bar{x}\)), sample standard deviation (s), and minimum value from the sample data.** ### Step 1: Select a Variable Let's choose the **Overall Unemployment Rate 2023** with the population standard deviation: - \(\sigma = 5.044\%\) ### Step 2: Gather Sample Data Since the problem does not provide specific sample data, we will need to assume that you have a sample dataset from which you can calculate the sample mean, sample standard deviation, and minimum value. ### Step 3: Calculate Descriptive Statistics 1. **Sample Mean (\(\bar{x}\))**: This is calculated by summing all the sample values and dividing by the number of samples. \[ \bar{x} = \frac{\sum x_i}{n} \] 2. **Sample Standard Deviation (s)**: This is calculated using the formula: \[ s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \] 3. **Minimum Value**: This is simply the smallest value in the sample dataset. ### Step 4: Enter Your Answers Since I do not have the actual sample data, please provide the sample values so that I can help you calculate the sample mean, sample standard deviation, and minimum value. If you have the data, please list it, and I will perform the calculations for you.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the unemployment rates fluctuate not just due to economic conditions but also based on seasonal trends? For instance, certain industries like tourism and agriculture can see spikes in employment during peak seasons. Understanding these patterns can help in interpreting the unemployment statistics more accurately. Now, when performing your one-sample \( Z^{\prime \prime} \) test, it's crucial to clearly define your sample size (n) and calculate the sample mean (\( \bar{x} \)). A common mistake is using a small sample size which can lead to an unreliable mean. Always ensure your sample is representative of the population for more accurate results!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad