Pregunta
upstudy study bank question image url

Consider the curve defined by the given parametric equations. \( \left\{\begin{array}{l}x=-5+\sec (t) \\ y=-4+2 \tan (t)\end{array}\right. \) Find the first derivative (in terms of \( t \) ). \( \frac{d y}{d x}= \) Find the second derivative (in terms of \( t \) ). \( \frac{d^{2} y}{d x^{2}}= \) Determine whether the curve is concave up or concave down at \( t= \) Concave down Concave up

Ask by Hilton Bernard. in the United States
Dec 14,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The first derivative is \(\frac{dy}{dx} = \frac{2}{\sin(t)}\). The second derivative is \(\frac{d^2y}{dx^2} = \frac{-2\cos^3(t)}{\sin^3(t)}\). The curve is concave down when \(0 < t < \frac{\pi}{2}\) or \(\frac{3\pi}{2} < t < 2\pi\), and concave up when \(\frac{\pi}{2} < t < \frac{3\pi}{2}\).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To find the first derivative \( \frac{d y}{d x} \), we'll apply the chain rule for parametric equations: 1. Differentiate \( x \) and \( y \) with respect to \( t \): \[ \frac{dx}{dt} = \sec(t) \tan(t) \] \[ \frac{dy}{dt} = 2 \sec^2(t) \] 2. Now, compute \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2 \sec^2(t)}{\sec(t) \tan(t)} = \frac{2 \sec(t)}{\tan(t)} = 2 \cot(t) \] Now for the second derivative \( \frac{d^2 y}{d x^2} \): 1. We differentiate \( \frac{dy}{dx} = 2 \cot(t) \) with respect to \( t \): \[ \frac{d}{dt}(2 \cot(t)) = -2 \csc^2(t) \] 2. Next, we find \( \frac{d^2 y}{dx^2} \): \[ \frac{d^2 y}{dx^2} = \frac{\frac{d}{dt}(2 \cot(t))}{\frac{dx}{dt}} = \frac{-2 \csc^2(t)}{\sec(t) \tan(t)} \] Simplifying this expression, recall that \( \csc(t) = \frac{1}{\sin(t)} \) and \( \sec(t) = \frac{1}{\cos(t)} \), yielding: \[ \frac{d^2 y}{dx^2} = \frac{-2 \cos^2(t)}{\sin^2(t) \tan(t)} = -2 \frac{\cos^2(t)}{\sin^3(t)} \] Now, for concavity at specific values of \( t \): Evaluate \( \frac{d^2 y}{dx^2} \) at a certain \( t \) (e.g., \( t = 0 \)): \[ \frac{d^2 y}{dx^2} \bigg|_{t=0} = -2 \frac{\cos^2(0)}{\sin^3(0)} \text{ (undefined since } \sin(0) = 0\text{)} \] However, if we choose \( t = \frac{\pi}{4} \): \[ \frac{d^2 y}{dx^2} \bigg|_{t=\frac{\pi}{4}} = -2 \frac{(\frac{\sqrt{2}}{2})^2}{(\frac{\sqrt{2}}{2})^3} = -2 \frac{1/2}{\sqrt{2}/2^{3/2}} = -2 \sqrt{2} \] Since this value is negative, we determine: Concave down.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad