Pregunta
\( \equiv \mathbf{1} \) Listen Which of these numbers is largest? \( 1 \times 10^{19} \) \( 8 \times 10^{29} \) \( 9 \times 10^{15} \) \( 9 \times 10^{27} \) \( 2 \times 10^{30} \)
Ask by Ramirez Potter. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The largest number is \( 2 \times 10^{30} \).
Solución
To determine which of the given numbers is the largest, let's examine each one:
1. \( 1 \times 10^{19} \)
2. \( 8 \times 10^{29} \)
3. \( 9 \times 10^{15} \)
4. \( 9 \times 10^{27} \)
5. \( 2 \times 10^{30} \)
**Step 1: Compare the Exponents**
The exponent in scientific notation (\(10^n\)) indicates the scale of the number. The higher the exponent, the larger the number:
- \( 10^{15} \) (smallest exponent)
- \( 10^{19} \)
- \( 10^{27} \)
- \( 10^{29} \)
- \( 10^{30} \) (largest exponent)
**Step 2: Analyze the Coefficients for the Largest Exponent**
The number with the highest exponent is \( 2 \times 10^{30} \). Even though \( 8 \times 10^{29} \) has a larger coefficient (8 vs. 2), its exponent \(10^{29}\) is smaller than \(10^{30}\). Therefore, \( 2 \times 10^{30} \) is larger.
**Conclusion**
The largest number among the given options is:
\[
2 \times 10^{30}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To determine which number is the largest, it's helpful to compare the coefficients with their respective powers of ten. The smallest exponent among the options is \( 15 \), and the largest is \( 30 \). Thus, we have \( 2 \times 10^{30} \), which stands out as the largest number since it has the highest power of ten. So, \( 2 \times 10^{30} \) takes the crown as the largest number in this list, easily overshadowing the others. By focusing on the powers of ten, you can quickly identify which numbers will outshine the rest!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium