An electric circuit contains a 1-H inductor, a \( 4-\Omega \) resistor, and a voltage source of cos \( t \). differential equation relating the current \( i \) and the time \( t \) is \( \mathrm{di} / \mathrm{dt}+4 \mathrm{i}=\cos \mathrm{t} \). Find \( i \) after method with \( \Delta \mathrm{t}=0.1 \mathrm{~s} \) if the initial current is zero. Solve the equation exactly and comp Use Euler's method to find \( i \) after 0.5 s . approx \( =0.2192 \) A (Round the final answer to four decimal places as needed. Round all intermediate values decimal places as needed.) Solve the equation exactly to find \( i \) after 0.5 s . iexact \( =\square \) A (Round to four decimal places as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the differential equation \( \frac{di}{dt} + 4i = \cos(t) \), we first find the integrating factor, which is \( e^{\int 4 dt} = e^{4t} \). Multiplying through by the integrating factor gives: \[ e^{4t} \frac{di}{dt} + 4 e^{4t} i = e^{4t} \cos(t). \] This simplifies to: \[ \frac{d}{dt}(e^{4t} i) = e^{4t} \cos(t). \] Integrating both sides yields: \[ e^{4t} i = \int e^{4t} \cos(t) dt + C. \] Using integration by parts to solve the integral gives: \[ \int e^{4t} \cos(t) dt = \frac{e^{4t}(4 \cos(t) + \sin(t))}{17} + C. \] Therefore, we can express \( i(t) \): \[ i(t) = \frac{4 \cos(t) + \sin(t)}{17} + Ce^{-4t}. \] Given the initial condition \( i(0) = 0 \): \[ 0 = \frac{4 \cdot 1 + 0}{17} + C \implies C = -\frac{4}{17}. \] Thus, the exact solution is: \[ i(t) = \frac{4 \cos(t) + \sin(t)}{17} - \frac{4}{17} e^{-4t}. \] To find \( i(0.5) \): \[ i(0.5) = \frac{4 \cos(0.5) + \sin(0.5)}{17} - \frac{4}{17} e^{-2}. \] Calculating: \[ \cos(0.5) \approx 0.8776, \quad \sin(0.5) \approx 0.4794, \quad e^{-2} \approx 0.1353. \] Now substituting: \[ i(0.5) = \frac{4 \cdot 0.8776 + 0.4794}{17} - \frac{4 \cdot 0.1353}{17} \approx \frac{3.5118 + 0.4794 - 0.5412}{17} \approx \frac{3.4500}{17} \approx 0.2030. \] Thus, the exact value is: \[ i_{\text{exact}}(0.5) \approx 0.2030 \, \text{A}. \]