Pregunta
upstudy study bank question image url

Solve the inequality and graph the solution set on a real number line. Express the solution set in interval notation. \( \frac{x^{2}-x-12}{x^{2}-8 x+7}>0 \) The solution set is

Ask by Hodges Bob. in the United States
Dec 18,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution set is \( x \in (-\infty,-3) \cup (1,4) \cup (7,\infty) \).

Solución

Solve the equation \( \frac{x^{2}-x-12}{x^{2}-8x+7}>0 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(\frac{x^{2}-x-12}{x^{2}-8x+7}>0\) - step1: Find the domain: \(\frac{x^{2}-x-12}{x^{2}-8x+7}>0,x \in \left(-\infty,1\right)\cup \left(1,7\right)\cup \left(7,+\infty\right)\) - step2: Set the numerator and denominator of \(\frac{x^{2}-x-12}{x^{2}-8x+7}\) equal to 0\(:\) \(\begin{align}&x^{2}-x-12=0\\&x^{2}-8x+7=0\end{align}\) - step3: Calculate: \(\begin{align}&x=4\\&x=-3\\&x=7\\&x=1\end{align}\) - step4: Determine the test intervals: \(\begin{align}&x<-3\\&-37\end{align}\) - step5: Choose a value: \(\begin{align}&x_{1}=-4\\&x_{2}=-1\\&x_{3}=3\\&x_{4}=6\\&x_{5}=8\end{align}\) - step6: Test the chosen value: \(\begin{align}&x<-3\textrm{ }\textrm{is the solution}\\&-37\textrm{ }\textrm{is the solution}\end{align}\) - step7: The final solution is \(x \in \left(-\infty,-3\right)\cup \left(1,4\right)\cup \left(7,+\infty\right):\) \(x \in \left(-\infty,-3\right)\cup \left(1,4\right)\cup \left(7,+\infty\right)\) - step8: Check if the solution is in the defined range: \(x \in \left(-\infty,-3\right)\cup \left(1,4\right)\cup \left(7,+\infty\right),x \in \left(-\infty,1\right)\cup \left(1,7\right)\cup \left(7,+\infty\right)\) - step9: Find the intersection: \(x \in \left(-\infty,-3\right)\cup \left(1,4\right)\cup \left(7,+\infty\right)\) The solution set to the inequality \( \frac{x^{2}-x-12}{x^{2}-8x+7}>0 \) is \( x \in (-\infty,-3) \cup (1,4) \cup (7,\infty) \). To graph the solution set on a real number line, we need to plot the intervals \( (-\infty,-3) \), \( (1,4) \), and \( (7,\infty) \) on the number line. The solution set in interval notation is \( (-\infty,-3) \cup (1,4) \cup (7,\infty) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality \( \frac{x^{2}-x-12}{x^{2}-8x+7} > 0 \), we start by factoring the numerator and the denominator: 1. **Numerator:** \( x^2 - x - 12 = (x - 4)(x + 3) \) 2. **Denominator:** \( x^2 - 8x + 7 = (x - 1)(x - 7) \) Now, the inequality can be rewritten as: \[ \frac{(x - 4)(x + 3)}{(x - 1)(x - 7)} > 0 \] Next, we identify the critical points where the expression is zero or undefined, which are \( x = -3, 1, 4, 7 \). These points will divide the number line into intervals that we need to test. The intervals are: 1. \( (-\infty, -3) \) 2. \( (-3, 1) \) 3. \( (1, 4) \) 4. \( (4, 7) \) 5. \( (7, \infty) \) Now we test each interval to see where the inequality holds true. - **Interval \( (-\infty, -3) \):** Choose \( x = -4 \): \(\frac{(-4 - 4)(-4 + 3)}{(-4 - 1)(-4 - 7)} = \frac{(-8)(-1)}{(-5)(-11)} > 0\) (True) - **Interval \( (-3, 1) \):** Choose \( x = 0 \): \(\frac{(0 - 4)(0 + 3)}{(0 - 1)(0 - 7)} = \frac{(-4)(3)}{(-1)(-7)} < 0\) (False) - **Interval \( (1, 4) \):** Choose \( x = 2 \): \(\frac{(2 - 4)(2 + 3)}{(2 - 1)(2 - 7)} = \frac{(-2)(5)}{(1)(-5)} > 0\) (True) - **Interval \( (4, 7) \):** Choose \( x = 5 \): \(\frac{(5 - 4)(5 + 3)}{(5 - 1)(5 - 7)} = \frac{(1)(8)}{(4)(-2)} < 0\) (False) - **Interval \( (7, \infty) \):** Choose \( x = 8 \): \(\frac{(8 - 4)(8 + 3)}{(8 - 1)(8 - 7)} = \frac{(4)(11)}{(7)(1)} > 0\) (True) From the tests, the intervals that satisfy the inequality are \( (-\infty, -3) \), \( (1, 4) \), and \( (7, \infty) \). Remember, at \( x = -3, 1, 4, \) and \( 7 \), we have points where the expression equals zero or is undefined, thus they are not included in the solution. In interval notation, the solution set is: \[ (-\infty, -3) \cup (1, 4) \cup (7, \infty) \] And if we want to graph this on a number line, we show open circles at -3, 1, 4, and 7 to indicate that these points are not included in the solution set, and shade the regions corresponding to the intervals.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad