Pregunta
upstudy study bank question image url

4:37 90 Done deltamath.com Assignment Overview 1 DeltaMath Score: 7/12 Penalty: none Axis of Symmetry and Vertex (with Formula) Question Video Examples Find the coordinates of the vertex of the following parabola algebraically. Write your answer as an \( (x, y) \) point. \[ y=5 x^{2}+20 x+35 \] Answer Attempt 1 out of 3 \( \square \) Submit Answer Copyright ©2025 DeltaMath.com All Rights Reserved. Terms \& Policies

Ask by Huang Erickson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The vertex of the parabola \( y = 5x^{2} + 20x + 35 \) is at the point \( (-2, 15) \).

Solución

To find the **vertex** of the parabola defined by the equation: \[ y = 5x^{2} + 20x + 35 \] we can use the **vertex formula** for a quadratic function in the form \( y = ax^{2} + bx + c \): \[ x = -\frac{b}{2a} \] Once we have the \( x \)-coordinate of the vertex, we can substitute it back into the original equation to find the corresponding \( y \)-coordinate. ### Step-by-Step Solution 1. **Identify the coefficients** \( a \), \( b \), and \( c \) from the quadratic equation: \[ a = 5,\quad b = 20,\quad c = 35 \] 2. **Find the \( x \)-coordinate of the vertex** using the formula: \[ x = -\frac{b}{2a} = -\frac{20}{2 \times 5} = -\frac{20}{10} = -2 \] 3. **Find the \( y \)-coordinate** by plugging \( x = -2 \) back into the original equation: \[ y = 5(-2)^{2} + 20(-2) + 35 \] \[ y = 5(4) - 40 + 35 \] \[ y = 20 - 40 + 35 \] \[ y = 15 \] 4. **Write the coordinates of the vertex** as an ordered pair: \[ \text{Vertex} = (-2,\ 15) \] ### Final Answer \[ (-2,\ 15) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the vertex of the parabola given by the equation \(y = 5x^{2} + 20x + 35\), you can use the formula for the x-coordinate of the vertex, which is \(x = -\frac{b}{2a}\). Here, \(a = 5\) and \(b = 20\). Plugging in these values gives you \(x = -\frac{20}{2 \times 5} = -2\). To find the y-coordinate, substitute \(x = -2\) back into the original equation to get \(y = 5(-2)^{2} + 20(-2) + 35 = 5(4) - 40 + 35 = 20 - 40 + 35 = 15\). Hence, the vertex is at \((-2, 15)\)! Now, let’s not forget about the real-world relevance! The vertex of a parabola can represent the maximum or minimum point in various contexts, such as the highest point of a projectile's path or the minimum cost in a quadratic cost function. So, when you’re solving these problems, think of it as uncovering the peak or trough in real-life scenarios!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad