Pregunta
upstudy study bank question image url

29. Which of the following are true? \( \begin{array}{llll}\text { I. } \lim _{x \rightarrow \infty} \ln x^{2}=\infty & \text { II. } \lim _{x \rightarrow 0} \ln x^{2}=-\infty & \text { III. } \lim _{x \rightarrow-\infty} \ln x^{2}=\infty\end{array} \) \( \begin{array}{llll}\text { A. I only } & \text { B. II only } & \text { C. I and II } & \text { D. II and III }\end{array} \) E. I, II, and III

Ask by Bartlett Wright. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

All three statements are true: I, II, and III.

Solución

Let's evaluate each statement one by one: **I.** \(\lim_{x \rightarrow \infty} \ln(x^2) = \infty\) - As \( x \) approaches \( \infty \), \( x^2 \) also approaches \( \infty \). - Therefore, \( \ln(x^2) \) approaches \( \infty \). - **This statement is true.** **II.** \(\lim_{x \rightarrow 0} \ln(x^2) = -\infty\) - As \( x \) approaches \( 0 \), \( x^2 \) approaches \( 0 \) from the positive side. - Therefore, \( \ln(x^2) \) approaches \( \ln(0^+) \), which is \( -\infty \). - **This statement is true.** **III.** \(\lim_{x \rightarrow -\infty} \ln(x^2) = \infty\) - As \( x \) approaches \( -\infty \), \( x^2 \) approaches \( \infty \) (since squaring a negative number results in a positive number). - Therefore, \( \ln(x^2) \) approaches \( \infty \). - **This statement is true.** Since all three statements are true, the correct answer is: **E. I, II, and III**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s break down the limits one by one! First, the limit as \( x \rightarrow \infty \) for \( \ln x^2 \) indeed goes to \( \infty \) because as \( x \) increases, \( x^2 \) grows exponentially, and so does its natural logarithm. Next, as \( x \) approaches 0 from the positive side, \( \ln x^2 \) approaches \( -\infty \) since \( x^2 \) goes to 0 and the natural logarithm of numbers approaching zero goes to negative infinity. Lastly, the limit as \( x \rightarrow -\infty \) for \( \ln x^2 \) also goes to \( \infty \) because \( x^2 \) is always positive, even for negative \( x \). Thus, all three statements are true! This means the correct answer is E: I, II, and III. Just remember: logarithmic functions can be quite dramatic! They shoot to infinity with increases in positive input, and plummet to negative infinity as they approach zero. It’s both powerful and a little moody! 🌟

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad