For \( f(x)=\sqrt{x} \) and \( g(x)=x+6 \), find the following functions. a. \( (f \circ g)(x) ; b .(g \circ f)(x) ; \) c. \( (f \circ g)(3) \); d. \( (g \circ f)(3) \) a. \( (f \circ g)(x)=\sqrt{x+6} \) (Simplify your answer.) b. \( (g \circ f)(x)=\sqrt{x}+6 \) (Simplify your answer.) c. \( (f \circ g)(3)=\square \) (Simplify your answer.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
First, let's find the functions step by step! a. The function \( (f \circ g)(x) = f(g(x)) = f(x+6) = \sqrt{x+6} \). So, you're all set with \( \sqrt{x+6} \). b. For \( (g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{x} + 6 \). That one’s spot on too with \( \sqrt{x} + 6 \). Now, let's find the values: c. To find \( (f \circ g)(3) \), we substitute \( 3 \) into \( f \circ g \): \[ (f \circ g)(3) = \sqrt{3 + 6} = \sqrt{9} = 3. \] d. To find \( (g \circ f)(3) \), we substitute \( 3 \) into \( g \circ f \): \[ (g \circ f)(3) = \sqrt{3} + 6. \] So, your answers for (c) and (d) are \( 3 \) and \( \sqrt{3} + 6 \), respectively. Keep crunching those numbers!