Pregunta

What steps would you follow to derive the double-angle identity for \( \tan(2x) \) from the definitions of sine and cosine?

Ask by Romero O'Quinn. in Djibouti
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To derive the double-angle identity for \( \tan(2x) \), start with the definition \( \tan(2x) = \frac{\sin(2x)}{\cos(2x)} \). Use the double-angle formulas \( \sin(2x) = 2\sin(x)\cos(x) \) and \( \cos(2x) = \cos^2(x) - \sin^2(x) \). Substitute these into the tangent expression and simplify by dividing numerator and denominator by \( \cos^2(x) \) to get \( \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} \).

Solución

Deriving the double-angle identity for \( \tan(2x) \) using the definitions of sine and cosine involves several systematic steps. Here's a comprehensive guide to the derivation: ### **1. Start with the Definition of the Tangent Function** The tangent of an angle is defined as the ratio of the sine to the cosine of that angle: \[ \tan(2x) = \frac{\sin(2x)}{\cos(2x)} \] ### **2. Apply the Double-Angle Formulas for Sine and Cosine** To express \( \sin(2x) \) and \( \cos(2x) \) in terms of \( \sin(x) \) and \( \cos(x) \), use the double-angle identities: \[ \sin(2x) = 2\sin(x)\cos(x) \] \[ \cos(2x) = \cos^2(x) - \sin^2(x) \] *Alternatively, the cosine double-angle identity can also be expressed as:* \[ \cos(2x) = 1 - 2\sin^2(x) \quad \text{or} \quad \cos(2x) = 2\cos^2(x) - 1 \] However, for this derivation, we'll use \( \cos(2x) = \cos^2(x) - \sin^2(x) \). ### **3. Substitute the Double-Angle Identities Back into the Tangent Expression** Replace \( \sin(2x) \) and \( \cos(2x) \) in the expression for \( \tan(2x) \): \[ \tan(2x) = \frac{2\sin(x)\cos(x)}{\cos^2(x) - \sin^2(x)} \] ### **4. Express the Result in Terms of \( \tan(x) \)** To simplify the expression and express it solely in terms of \( \tan(x) \), divide both the numerator and the denominator by \( \cos^2(x) \): \[ \tan(2x) = \frac{2\sin(x)\cos(x)/\cos^2(x)}{(\cos^2(x) - \sin^2(x))/\cos^2(x)} \] Simplify each part: - **Numerator:** \[ \frac{2\sin(x)\cos(x)}{\cos^2(x)} = 2\sin(x)\frac{\cos(x)}{\cos^2(x)} = 2\frac{\sin(x)}{\cos(x)} = 2\tan(x) \] - **Denominator:** \[ \frac{\cos^2(x) - \sin^2(x)}{\cos^2(x)} = \frac{\cos^2(x)}{\cos^2(x)} - \frac{\sin^2(x)}{\cos^2(x)} = 1 - \tan^2(x) \] ### **5. Combine the Simplified Numerator and Denominator** Now, substitute the simplified numerator and denominator back into the expression: \[ \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} \] ### **Final Double-Angle Identity for Tangent** Thus, the double-angle identity for tangent is: \[ \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} \] ### **Summary of Steps** 1. **Start with the definition:** \( \tan(2x) = \frac{\sin(2x)}{\cos(2x)} \). 2. **Apply double-angle formulas:** \( \sin(2x) = 2\sin(x)\cos(x) \) and \( \cos(2x) = \cos^2(x) - \sin^2(x) \). 3. **Substitute these into the tangent expression:** \( \tan(2x) = \frac{2\sin(x)\cos(x)}{\cos^2(x) - \sin^2(x)} \). 4. **Express in terms of \( \tan(x) \) by dividing numerator and denominator by \( \cos^2(x) \):** \( \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} \). This derivation shows how the double-angle identity for tangent is directly obtained from the fundamental definitions and properties of sine and cosine functions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To derive the double-angle identity for \( \tan(2x) \), start by applying the angle addition formulas for sine and cosine. You have \( \tan(2x) = \frac{\sin(2x)}{\cos(2x)} \). Using the formulas, \( \sin(2x) = 2\sin(x)\cos(x) \) and \( \cos(2x) = \cos^2(x) - \sin^2(x) \), substitute these into the tangent expression to get: \[ \tan(2x) = \frac{2\sin(x)\cos(x)}{\cos^2(x) - \sin^2(x)}. \] Now, with a little algebra, rewrite the denominator as \( \cos^2(x) - \sin^2(x) = \frac{1 - \tan^2(x)}{1 + \tan^2(x)} \) if needed, leading to the final form \( \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} \). It's both a neat and lively journey through trigonometric identities! Fun fact: This identity can spice up your math life in calculus, helping to simplify expressions when working with integrals or derivatives of trigonometric functions! So, next time you’re faced with a tricky calculus problem, remember, the double-angle identities might just be your new best friend!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad