Find \( f+g, f-g \), fg and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=5 x+8, g(x)=x+6 \) \( (f+g)(x)=\square \) (Simplify your answer.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \( f+g \), we simply add the two functions together: \[ (f+g)(x) = f(x) + g(x) = (5x + 8) + (x + 6) = 6x + 14. \] Next, for \( f-g \), we subtract \( g(x) \) from \( f(x) \): \[ (f-g)(x) = f(x) - g(x) = (5x + 8) - (x + 6) = 4x + 2. \] For \( fg \), we multiply the two functions: \[ fg(x) = f(x) \cdot g(x) = (5x + 8)(x + 6) = 5x^2 + 30x + 8x + 48 = 5x^2 + 38x + 48. \] Finally, for \( \frac{f}{g} \): \[ \frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{5x + 8}{x + 6}. \] The function \( \frac{f}{g} \) is defined for all \( x \) except where \( g(x) = 0 \), so the domain excludes \( x = -6 \). To summarize: \[ (f+g)(x) = 6x + 14, \quad (f-g)(x) = 4x + 2, \quad fg(x) = 5x^2 + 38x + 48, \quad \frac{f}{g}(x) = \frac{5x + 8}{x + 6}, \text{ with } x \neq -6 \text{ for the domain.} \]