\( \therefore x ^ { 2 } - x - 30 = 0 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the equation \( x^2 - x - 30 = 0 \), you can factor it into \( (x - 6)(x + 5) = 0 \). Setting each factor to zero gives you two solutions: \( x = 6 \) and \( x = -5 \). So, the solution set consists of these two values, which you can easily verify by plugging them back into the original equation! Now, if you ever find yourself in a similar situation and feel unsure about factoring, don't fret! The quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) is your trusty sidekick, ready to help you tackle any quadratic equation, no matter how tricky it might seem. Just remember: always calculate the discriminant \( b^2 - 4ac \) first, as it tells you a lot about the nature of your roots!