3 The exponential model below represents the population of a town \( x \) years from now. What is meaning of 10581 in the model? \( f(x)=10881(1.03)^{x} \) Show your work here Hint To add an exponent \( \left(x^{\prime \prime}\right) \), type "exponent" or press " \( \wedge \) ". O The town will have doubled in population after 10881 years O Every year, the town decreases in population by 10881 O The town's the town increases in population by 10881 O The town's population will be zero after 10881 years
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
In the exponential model \( f(x) = 10881(1.03)^{x} \), the number 10881 represents the initial population of the town at year \( x = 0 \). This is the starting point from which the population grows annually by a rate of 3%, as indicated by the base of the exponent (1.03). Thus, when \( x = 0 \), \( f(0) = 10881(1.03)^{0} = 10881 \), confirming that the town's population starts at 10,881 people. So, the correct answer is: O The town's initial population is 10,881.