Pregunta
upstudy study bank question image url

Checkpoint Sketch the graph of \( (x+2)^{2}+(y-2)^{2}<16 \)

Ask by Fowler Ellis. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the graph of \( (x+2)^{2}+(y-2)^{2}<16 \), draw a circle with center at \( (-2, 2) \) and radius 4. Shade the area inside the circle, using a dashed line for the boundary.

Solución

To sketch the graph of the inequality \( (x+2)^{2}+(y-2)^{2}<16 \), we can follow these steps: 1. **Identify the type of graph**: The expression \( (x+2)^{2}+(y-2)^{2}=16 \) represents a circle. The inequality \( < 16 \) indicates that we are interested in the area inside this circle. 2. **Determine the center and radius**: - The center of the circle is at the point \( (-2, 2) \). - The radius \( r \) can be found by taking the square root of 16, which gives \( r = 4 \). 3. **Draw the circle**: - Plot the center at \( (-2, 2) \). - From the center, measure 4 units in all directions (up, down, left, right) to find the points on the circle: - Up: \( (-2, 6) \) - Down: \( (-2, -2) \) - Left: \( (-6, 2) \) - Right: \( (2, 2) \) 4. **Sketch the circle**: - Draw a circle with the center at \( (-2, 2) \) and passing through the points identified above. 5. **Shade the interior**: - Since the inequality is \( < 16 \), shade the area inside the circle to indicate that all points within this region satisfy the inequality. 6. **Boundary**: - The boundary of the circle itself (where \( (x+2)^{2}+(y-2)^{2}=16 \)) is not included in the solution set, so you can represent this with a dashed line. This process will give you a clear sketch of the graph for the inequality \( (x+2)^{2}+(y-2)^{2}<16 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The inequality \( (x+2)^{2}+(y-2)^{2}<16 \) represents the interior of a circle centered at the point (-2, 2) with a radius of 4. To sketch the graph, start by plotting the center at (-2, 2). Then, measure 4 units in all directions (up, down, left, and right) from the center to draw the boundary circle. Since the inequality is strict (<), the boundary of the circle will not be included, so use a dashed line for the circle itself. The area inside the circle is where the inequality holds true. Now, let’s add some fun! Did you know that the equation of a circle stems from the Pythagorean theorem? Just like finding the distance from the center to a point on the circle, this inequality uses the same concept of 'distance' to define what lies inside the circle! It’s like a cozy little space right around the center where all the points love to hang out!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad