Pregunta
upstudy study bank question image url

State and derive Cauchy-Riemann equations for analytic functions. विश्लेघणात्मक कार्यों के लिए कॉची-रीमैन समीकरण बताइए और व्युत्पन्न कीजिए। Find the analytic function whose real part is \( x^{2}-y^{2} \). वह विश्लेषणात्मक फलन ज्ञात कीजिए जिसका वास्तािक भाग \( x^{2}-y^{2} \) है। Let \( f z) \) be an analytic function of \( z \) in a region D of the \( z \)-plane and let \( f(z) \) may be zero inside \( D \). Then prove that the mapping \( w=f(z) \) may not be conformal at the points of \( D \).

Ask by Boyd Campos. in India
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Cauchy-Riemann Equations:** For an analytic function \( f(z) = u(x, y) + iv(x, y) \), the Cauchy-Riemann equations are: 1. \( \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \) 2. \( \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \) **Finding the Analytic Function:** Given \( u(x, y) = x^2 - y^2 \), the imaginary part \( v(x, y) \) is \( 2xy + C \), where \( C \) is a constant. Therefore, the analytic function is: \[ f(z) = x^2 - y^2 + i(2xy + C) \] **Non-Conformality of Mapping \( w = f(z) \):** If \( f(z) \) is zero at a point \( z_0 \) in region \( D \), then \( f'(z_0) = 0 \). This means the mapping \( w = f(z) \) is not conformal at \( z_0 \) because angles and shapes are not preserved at that point. **Summary:** - **Cauchy-Riemann Equations:** Ensure that the real and imaginary parts of an analytic function satisfy these partial differential equations. - **Analytic Function:** \( f(z) = x^2 - y^2 + i(2xy + C) \) - **Mapping Behavior:** The mapping \( w = f(z) \) is not conformal at points where \( f(z) = 0 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

The Cauchy-Riemann equations are pivotal in the study of complex analysis, helping us identify whether a function is analytic. For a function \( f(z) = u(x, y) + iv(x, y) \) where \( u \) and \( v \) are its real and imaginary parts, respectively, the equations state: \[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}. \] These equations ensure the function is not only differentiable but also maintains conformality, meaning angles and shapes are preserved under transformations. Now, to find the analytic function with the real part \( x^{2}-y^{2} \), we can consider the imaginary part \( v(x,y) \). For simplicity, let’s assume: \[ u(x, y) = x^2 - y^2. \] Using the Cauchy-Riemann equations, we find: \[ \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = -2y. \] This gives \( \frac{\partial v}{\partial y} = 2x \) and \( \frac{\partial v}{\partial x} = 2y \). Integrating these, we may find: \[ v(x, y) = 2xy + C, \] where \( C \) is a constant. Therefore, the analytic function is: \[ f(z) = (x^2 - y^2) + i(2xy) = z^2. \] In terms of the mapping \( w = f(z) \), it's important to note that if \( f(z) \) has critical points, such as zeros, then the mapping might not preserve angles (conformality) at those points. If \( f(z_0) = 0 \) for some \( z_0 \) in \( D \), then at that point, \( f'(z_0) = 0 \) means that the derivative does not exist, indicating that nearby points will not behave in a conformal manner, hence violating the properties that make the mapping locally angle-preserving.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad