State and derive Cauchy-Riemann equations for analytic functions. विश्लेघणात्मक कार्यों के लिए कॉची-रीमैन समीकरण बताइए और व्युत्पन्न कीजिए। Find the analytic function whose real part is \( x^{2}-y^{2} \). वह विश्लेषणात्मक फलन ज्ञात कीजिए जिसका वास्तािक भाग \( x^{2}-y^{2} \) है। Let \( f z) \) be an analytic function of \( z \) in a region D of the \( z \)-plane and let \( f(z) \) may be zero inside \( D \). Then prove that the mapping \( w=f(z) \) may not be conformal at the points of \( D \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The Cauchy-Riemann equations are pivotal in the study of complex analysis, helping us identify whether a function is analytic. For a function \( f(z) = u(x, y) + iv(x, y) \) where \( u \) and \( v \) are its real and imaginary parts, respectively, the equations state: \[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}. \] These equations ensure the function is not only differentiable but also maintains conformality, meaning angles and shapes are preserved under transformations. Now, to find the analytic function with the real part \( x^{2}-y^{2} \), we can consider the imaginary part \( v(x,y) \). For simplicity, let’s assume: \[ u(x, y) = x^2 - y^2. \] Using the Cauchy-Riemann equations, we find: \[ \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = -2y. \] This gives \( \frac{\partial v}{\partial y} = 2x \) and \( \frac{\partial v}{\partial x} = 2y \). Integrating these, we may find: \[ v(x, y) = 2xy + C, \] where \( C \) is a constant. Therefore, the analytic function is: \[ f(z) = (x^2 - y^2) + i(2xy) = z^2. \] In terms of the mapping \( w = f(z) \), it's important to note that if \( f(z) \) has critical points, such as zeros, then the mapping might not preserve angles (conformality) at those points. If \( f(z_0) = 0 \) for some \( z_0 \) in \( D \), then at that point, \( f'(z_0) = 0 \) means that the derivative does not exist, indicating that nearby points will not behave in a conformal manner, hence violating the properties that make the mapping locally angle-preserving.