Pregunta
upstudy study bank question image url

Madison invested \( \$ 3,300 \) in an account paying an interest rate of \( 6.7 \% \) compounded daily. Assuming no deposits or withdrawals are made, how much money, to the nearest ten dollars, would be in the account after 5 years?

Ask by Mccoy Mccoy. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 5 years, Madison will have approximately \$4,620 in her account.

Solución

To determine the amount of money Madison will have in her account after 5 years with daily compounding interest, we can use the future value formula for compound interest: \[ A = P \times \left(1 + \frac{r}{n}\right)^{n t} \] where: - \( P = \$3,300 \) (initial investment) - \( r = 6.7\% = 0.067 \) (annual interest rate) - \( n = 365 \) (number of times interest is compounded per year, daily in this case) - \( t = 5 \) years (time) Plugging in the values: \[ A = 3300 \times \left(1 + \frac{0.067}{365}\right)^{365 \times 5} \] First, calculate the daily interest rate: \[ \frac{0.067}{365} \approx 0.00018356 \] Then, raise the base to the exponent: \[ \left(1 + 0.00018356\right)^{1825} \approx e^{0.335} \approx 1.398 \] Finally, multiply by the principal: \[ A \approx 3300 \times 1.398 = 4,614 \] Rounding to the nearest ten dollars: \[ A \approx \$4,620 \] **Answer:** After 5 years, Madison’s account will hold approximately \$4,620.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the amount in Madison's account after 5 years with daily compounding interest, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount in the account after time \( t \) - \( P \) is the principal amount (initial investment, \( \$ 3,300 \)) - \( r \) is the annual interest rate (as a decimal, \( 0.067 \)) - \( n \) is the number of times that interest is compounded per year (daily, so \( 365 \)) - \( t \) is the number of years the money is invested or borrowed (5 years) Plugging in the values: \[ A = 3300 \left(1 + \frac{0.067}{365}\right)^{365 \times 5} \] Calculating this step by step: 1. Calculate \( \frac{0.067}{365} \), which is approximately \( 0.0001835616438356 \). 2. Calculate \( 1 + 0.0001835616438356 \), which is approximately \( 1.0001835616438356 \). 3. Calculate \( 365 \times 5 = 1825 \). 4. Calculate \( A = 3300 \left(1.0001835616438356\right)^{1825} \). Using a calculator for the exponentiation, we find: \[ (1.0001835616438356)^{1825} \approx 1.375794679803 \] Finally, calculate \( A \): \[ A \approx 3300 \times 1.375794679803 \approx 4549.12 \] Rounding this to the nearest ten dollars gives us approximately \( \$ 4,550 \).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad