Pregunta

\( a+b+1\geq \sqrt {ab}+\sqrt {a}+\sqrt {b} \)

Ask by Collins Martinez. in Iran
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The inequality \( a + b + 1 \geq \sqrt{ab} + \sqrt{a} + \sqrt{b} \) holds true for all non-negative real numbers \( a \) and \( b \).

Solución

To analyze and prove the inequality: \[ a + b + 1 \geq \sqrt{ab} + \sqrt{a} + \sqrt{b} \] we'll proceed step-by-step. Let's assume that \( a \) and \( b \) are non-negative real numbers (\( a, b \geq 0 \)) to ensure that the square roots are defined. ### Step 1: Variable Substitution Let’s introduce new variables to simplify the inequality: \[ x = \sqrt{a} \quad \text{and} \quad y = \sqrt{b} \] Since \( a, b \geq 0 \), it follows that \( x, y \geq 0 \). Substituting these into the original inequality: \[ a = x^2 \quad \text{and} \quad b = y^2 \] The inequality becomes: \[ x^2 + y^2 + 1 \geq xy + x + y \] ### Step 2: Rearranging the Inequality Rearrange the inequality to group like terms: \[ x^2 - xy + y^2 - x - y + 1 \geq 0 \] ### Step 3: Analyzing as a Quadratic in \( x \) Consider the expression as a quadratic in \( x \): \[ x^2 - (y + 1)x + (y^2 - y + 1) \geq 0 \] For this quadratic to be non-negative for all \( x \), its discriminant must be less than or equal to zero. ### Step 4: Calculating the Discriminant The discriminant \( D \) of the quadratic \( ax^2 + bx + c \) is given by \( D = b^2 - 4ac \). For our quadratic: \[ a = 1, \quad b = -(y + 1), \quad c = y^2 - y + 1 \] Thus, \[ D = (y + 1)^2 - 4(1)(y^2 - y + 1) = y^2 + 2y + 1 - 4y^2 + 4y - 4 = -3y^2 + 6y - 3 \] Factor out the negative: \[ D = -3(y^2 - 2y + 1) = -3(y - 1)^2 \] Since \( (y - 1)^2 \geq 0 \) for all real \( y \), it follows that: \[ D \leq 0 \] ### Step 5: Conclusion from the Discriminant A non-positive discriminant (\( D \leq 0 \)) means that the quadratic \( x^2 - (y + 1)x + (y^2 - y + 1) \) does not cross the x-axis and is always non-negative (since the coefficient of \( x^2 \) is positive). ### Step 6: Finalizing the Proof Since the rearranged inequality holds for all \( x, y \geq 0 \), this implies that the original inequality: \[ a + b + 1 \geq \sqrt{ab} + \sqrt{a} + \sqrt{b} \] is true for all non-negative real numbers \( a \) and \( b \). ### Example Verification Let's verify the inequality with specific values: - **Case 1:** \( a = b = 1 \) \[ 1 + 1 + 1 = 3 \geq \sqrt{1 \cdot 1} + \sqrt{1} + \sqrt{1} = 1 + 1 + 1 = 3 \] The inequality holds with equality. - **Case 2:** \( a = 4, b = 9 \) \[ 4 + 9 + 1 = 14 \geq \sqrt{4 \cdot 9} + \sqrt{4} + \sqrt{9} = 6 + 2 + 3 = 11 \] \( 14 \geq 11 \) holds true. - **Case 3:** \( a = 0, b = 0 \) \[ 0 + 0 + 1 = 1 \geq \sqrt{0 \cdot 0} + \sqrt{0} + \sqrt{0} = 0 + 0 + 0 = 0 \] \( 1 \geq 0 \) holds true. These examples confirm that the inequality holds in various scenarios.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

This inequality features a play between the terms involving \(a\) and \(b\) and their square roots. To explore this, one can set \( a = x^2 \) and \( b = y^2 \), transforming the inequality into a format that can be tackled using properties of quadratic equations. By doing so, you can analyze the relationship between the original variables and their roots, leading to deeper insights into how they interact! One common mistake when dealing with inequalities like this is overlooking the conditions under which the square roots are defined, particularly restricting \(a\) and \(b\) to non-negative values. Keep in mind that squaring both sides can sometimes introduce extraneous solutions, so it’s crucial to check your solutions against the original inequality and ensure they hold true for all involved values!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad