Pregunta
upstudy study bank question image url

38. \( \sec x+\tan x=1 \)

Ask by May Bolton. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x = 2k\pi \), where \( k \) is any integer.

Solución

Solve the equation \( \sec(x)+\tan(x)=1 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sec\left(x\right)+\tan\left(x\right)=1\) - step1: Find the domain: \(\sec\left(x\right)+\tan\left(x\right)=1,x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step2: Rewrite the expression: \(\frac{1}{\cos\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}=1\) - step3: Multiply both sides of the equation by LCD: \(\left(\frac{1}{\cos\left(x\right)}+\frac{\sin\left(x\right)}{\cos\left(x\right)}\right)\cos\left(x\right)=1\times \cos\left(x\right)\) - step4: Simplify the equation: \(1+\sin\left(x\right)=\cos\left(x\right)\) - step5: Raise both sides to the \(2\)-th power\(:\) \(\left(1+\sin\left(x\right)\right)^{2}=\cos^{2}\left(x\right)\) - step6: Calculate: \(1+2\sin\left(x\right)+\sin^{2}\left(x\right)=\cos^{2}\left(x\right)\) - step7: Rewrite the expression: \(1+2\sin\left(x\right)+\sin^{2}\left(x\right)=1-\sin^{2}\left(x\right)\) - step8: Move the expression to the left side: \(1+2\sin\left(x\right)+\sin^{2}\left(x\right)-\left(1-\sin^{2}\left(x\right)\right)=0\) - step9: Calculate: \(2\sin\left(x\right)+2\sin^{2}\left(x\right)=0\) - step10: Factor the expression: \(2\sin\left(x\right)\left(1+\sin\left(x\right)\right)=0\) - step11: Calculate: \(\sin\left(x\right)\left(1+\sin\left(x\right)\right)=0\) - step12: Separate into possible cases: \(\begin{align}&\sin\left(x\right)=0\\&1+\sin\left(x\right)=0\end{align}\) - step13: Solve the equation: \(\begin{align}&x=\left\{ \begin{array}{l}2k\pi \\\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\\&x=\frac{3\pi }{2}+2k\pi ,k \in \mathbb{Z}\end{align}\) - step14: Find the union: \(x=\left\{ \begin{array}{l}2k\pi \\\pi +2k\pi \\\frac{3\pi }{2}+2k\pi \end{array}\right.,k \in \mathbb{Z}\) - step15: Check the solution: \(x=2k\pi ,k \in \mathbb{Z}\) - step16: Check if the solution is in the defined range: \(x=2k\pi ,k \in \mathbb{Z},x\neq \frac{\pi }{2}+k\pi ,k \in \mathbb{Z}\) - step17: Find the intersection: \(x=2k\pi ,k \in \mathbb{Z}\) The solution to the equation \( \sec x + \tan x = 1 \) is \( x = 2k\pi \), where \( k \) is an integer.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( \sec x + \tan x = 1 \), we can first express secant and tangent in terms of sine and cosine: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Substituting these into the equation gives us: \[ \frac{1}{\cos x} + \frac{\sin x}{\cos x} = 1 \] Combining the fractions: \[ \frac{1 + \sin x}{\cos x} = 1 \] Multiplying both sides by \(\cos x\) (assuming \(\cos x \neq 0\)) leads to: \[ 1 + \sin x = \cos x \] Now, rearranging the equation gives: \[ \cos x - \sin x = 1 \] Next, we can use the Pythagorean identity \(\cos^2 x + \sin^2 x = 1\). Replacing \(\cos x\) gives us a system we can work with. To go further, we can square both sides: \[ (\cos x - \sin x)^2 = 1^2 \] \[ \cos^2 x - 2 \cos x \sin x + \sin^2 x = 1 \] \[ 1 - 2 \cos x \sin x = 1 \] This simplifies to: \[ -2\cos x \sin x = 0 \] Which leads us to: \[ \cos x \sin x = 0 \] Thus, either \(\cos x = 0\) or \(\sin x = 0\). This means \(x = \frac{\pi}{2} + k\pi\) for \(\cos x = 0\) or \(x = k\pi\) for \(\sin x = 0\) where \(k\) is any integer. Therefore, the solutions to the original equation are: \[ x = n\pi \quad \text{and} \quad x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad