Pregunta
upstudy study bank question image url

a. Write a conjecture that relates the result of the process to the original number selected. Represent the original number as \( n \). The result is 4 n . (Simplify your answer.) b. Represent the original number as n , and use deductive reasoning to prove the conjecture in part (a). Multiply the number by 8 .

Ask by Wright Long. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The result of multiplying the original number \( n \) by 8 is \( 8n \).

Solución

Certainly! Let's address each part of your question step by step. --- ### **a. Conjecture Relating the Process Result to the Original Number** **Conjecture:** When the original number is represented by \( n \), the result of the process is four times the original number. Mathematically, this can be expressed as: \[ \text{Result} = 4n \] *Simplified Answer:* \[ R = 4n \] --- ### **b. Proof of the Conjecture Using Deductive Reasoning** **Given:** - Original number: \( n \) - Process: Multiply the number by 8. **Objective:** Prove that the result of the process is \( 4n \). **Proof:** 1. **Start with the Original Number:** Let the original number be \( n \). 2. **Apply the Given Process:** The process involves multiplying the number by 8. \[ \text{Result} = 8 \times n = 8n \] 3. **Compare with the Conjecture:** The conjecture states that the result should be \( 4n \). However, according to the process: \[ 8n \neq 4n \quad \text{(unless \( n = 0 \))} \] This indicates a discrepancy between the conjecture and the process. 4. **Resolving the Discrepancy:** To align the conjecture with the process, we need to adjust our conjecture based on the given process. - **Revised Conjecture:** If the process is to multiply the number by 8, then the conjecture should reflect that the result is eight times the original number. \[ R = 8n \] 5. **Conclusion:** Given the process of multiplying the original number \( n \) by 8, the accurate conjecture should be: \[ R = 8n \] Therefore, the initial conjecture \( R = 4n \) does not hold true under the provided process. The correct relationship is that the result is eight times the original number. --- **Final Note:** There appears to be an inconsistency between the initial conjecture \( R = 4n \) and the described process of multiplying the number by 8. To maintain logical consistency, the conjecture should be updated to \( R = 8n \) based on the process provided.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

If you multiply an original number \( n \) by 8, the conjecture states that the result is equal to \( 4n \) if you halve the product. In simplified terms, this means that: Original operation: \( 8n \) Halving the result: \( \frac{8n}{2} = 4n \) Hence, the relationship can be expressed as \( \frac{8n}{2} = 4n \), confirming that indeed the outcome is half of eight times the original number. To prove this using deductive reasoning: Start with the original number \( n \). When you multiply it by 8, you get \( 8n \). By applying the division of 2 to this product, it yields \( \frac{8n}{2} \). By simplifying \( \frac{8n}{2} \), you arrive at \( 4n \), thereby confirming the conjecture that the result of halving the product of the original number \( n \) multiplied by 8 is indeed \( 4n \). Thus, the conjecture holds true through basic arithmetic operations.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad