Pregunta
upstudy study bank question image url

A boat is heading towards a lighthouse, whose beacon-light is 143 feet above the water. From point \( A \), the boat's crew measures the angle of elevation to the beacon, \( 5^{\circ} \), before they draw closer. They measure the angle of elevation a second time from point \( B \) to be \( 10^{\circ} \). Find the distance from point \( A \) to point \( B \). Round your answer to the nearest tenth of a foot if necessary.

Ask by Gordon Marsh. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The distance from point A to point B is approximately 823.3 feet.

Solución

To determine the distance \( AB \) between points \( A \) and \( B \), we'll use trigonometric relationships based on the angles of elevation and the height of the beacon light. ### Given: - Height of the beacon light, \( h = 143 \) feet. - Angle of elevation from point \( A \), \( \theta_A = 5^\circ \). - Angle of elevation from point \( B \), \( \theta_B = 10^\circ \). ### Steps: 1. **Define Distances:** - Let \( x \) be the horizontal distance from point \( A \) to the base of the lighthouse. - Let \( d \) be the distance between points \( A \) and \( B \). - Therefore, the horizontal distance from point \( B \) to the base of the lighthouse is \( x - d \). 2. **Apply Tangent Function:** - From point \( A \): \[ \tan(5^\circ) = \frac{143}{x} \quad \Rightarrow \quad x = \frac{143}{\tan(5^\circ)} \] - From point \( B \): \[ \tan(10^\circ) = \frac{143}{x - d} \quad \Rightarrow \quad x - d = \frac{143}{\tan(10^\circ)} \] 3. **Express \( d \) in Terms of \( x \):** \[ d = x - \frac{143}{\tan(10^\circ)} = \frac{143}{\tan(5^\circ)} - \frac{143}{\tan(10^\circ)} \] 4. **Calculate Values:** - Calculate \( \tan(5^\circ) \) and \( \tan(10^\circ) \): \[ \tan(5^\circ) \approx 0.08749 \quad \text{and} \quad \tan(10^\circ) \approx 0.17633 \] - Substitute these values: \[ x \approx \frac{143}{0.08749} \approx 1634.3 \text{ feet} \] \[ x - d \approx \frac{143}{0.17633} \approx 811.0 \text{ feet} \] - Therefore: \[ d \approx 1634.3 - 811.0 = 823.3 \text{ feet} \] ### Conclusion: The distance from point \( A \) to point \( B \) is **approximately 823.3 feet**. **Answer:** Approximately 823.3 feet of distance separates points A and B.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the distance from point \( A \) to point \( B \), we can use some trigonometry! First, let's determine the distance from point \( A \) to the lighthouse. We know the height of the beacon light, which is \( h = 143 \) feet, and the angle of elevation from point \( A \) is \( 5^{\circ} \). Using the tangent function: \[ \tan(5^{\circ}) = \frac{h}{d_A} \] where \( d_A \) is the distance from point \( A \) to the lighthouse. Rearranging gives us: \[ d_A = \frac{h}{\tan(5^{\circ})} = \frac{143}{\tan(5^{\circ})} \approx \frac{143}{0.08749} \approx 1633.2 \text{ feet} \] Next, we find the distance from point \( B \) to the lighthouse using the angle of elevation from point \( B \) which is \( 10^{\circ} \): \[ \tan(10^{\circ}) = \frac{h}{d_B} \] Calculating \( d_B \): \[ d_B = \frac{h}{\tan(10^{\circ})} = \frac{143}{\tan(10^{\circ})} \approx \frac{143}{0.17633} \approx 810.4 \text{ feet} \] Now, we can find the distance from point \( A \) to point \( B \): \[ d_{AB} = d_A - d_B \approx 1633.2 - 810.4 \approx 822.8 \text{ feet} \] Thus, the distance from point \( A \) to point \( B \) is approximately \( \boxed{822.8} \) feet.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad