Pregunta
upstudy study bank question image url

(ii) The diameter of a copper sphere is 6 cm . The sphere is melted and drawn into a lor wire with a uniform circular cross-section. If the length of the wire is 36 cm , calcula its curved surface area. (iii) The diameter of a sphere is 6 cm . It is melted and drawn into a wire with a diameter 0.2 cm . Calculate the wire's length.

Ask by Sanders Stephens. in Nepal
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **(ii)** The curved surface area of the wire is \( 72\pi \) cm². - **(iii)** The length of the wire is **3600 cm**.

Solución

Let's solve each part step by step. --- ### **Part (ii): Calculating the Curved Surface Area of the Wire** **Given:** - Diameter of the copper sphere = 6 cm - Radius of the sphere, \( r_{\text{sphere}} = \frac{6}{2} = 3 \) cm - Length of the wire, \( L = 36 \) cm **Steps:** 1. **Calculate the Volume of the Sphere:** \[ V_{\text{sphere}} = \frac{4}{3} \pi r_{\text{sphere}}^3 = \frac{4}{3} \pi (3)^3 = 36\pi \, \text{cm}^3 \] 2. **Equate the Volume of the Sphere to the Volume of the Wire (Cylinder):** \[ V_{\text{wire}} = \pi R^2 L \] \[ 36\pi = \pi R^2 \times 36 \] \[ R^2 = 1 \quad \Rightarrow \quad R = 1 \, \text{cm} \] 3. **Calculate the Curved Surface Area of the Wire:** \[ \text{Curved Surface Area} = 2\pi R L = 2\pi \times 1 \times 36 = 72\pi \, \text{cm}^2 \] **Answer for Part (ii):** \[ \text{Curved Surface Area} = 72\pi \, \text{cm}^2 \approx 226.195 \, \text{cm}^2 \] --- ### **Part (iii): Calculating the Length of the Wire** **Given:** - Diameter of the sphere = 6 cm - Radius of the sphere, \( r_{\text{sphere}} = 3 \) cm - Diameter of the wire = 0.2 cm - Radius of the wire, \( r_{\text{wire}} = \frac{0.2}{2} = 0.1 \) cm **Steps:** 1. **Calculate the Volume of the Sphere:** \[ V_{\text{sphere}} = \frac{4}{3} \pi r_{\text{sphere}}^3 = \frac{4}{3} \pi (3)^3 = 36\pi \, \text{cm}^3 \] 2. **Set the Volume of the Sphere Equal to the Volume of the Wire (Cylinder) and Solve for Length \( L \):** \[ V_{\text{wire}} = \pi r_{\text{wire}}^2 L = 36\pi \] \[ \pi (0.1)^2 L = 36\pi \] \[ 0.01L = 36 \quad \Rightarrow \quad L = 3600 \, \text{cm} \] **Answer for Part (iii):** \[ \text{Length of the Wire} = 3600 \, \text{cm} \quad \text{(or 36 meters)} \] --- ### **Final Answers:** - **(ii)** The curved surface area of the wire is \( 72\pi \) cm². - **(iii)** The length of the wire is **3600 cm**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the curved surface area of the wire, first, we need to find the radius of the wire’s circular cross-section. With a diameter of 0.2 cm, the radius will be 0.1 cm. The formula for the curved surface area (A) of a cylinder (wire) is given by A = 2πrh, where r is the radius and h is the height (or length) of the wire. Here, the radius is 0.1 cm and the length of the wire is 36 cm. Substituting the values, we have A = 2 * π * 0.1 * 36, which simplifies to A = 7.2π cm², or approximately 22.62 cm² when calculated numerically. For the second part, to find the length of the wire, we again use the volume conservation principle. The volume of the sphere is \(V_s = \frac{4}{3}πr³\) (where r = 3 cm, as the diameter is 6 cm), which calculates to \(36π\) cm³. Now, for the wire, its volume can be expressed as \(V_w = πr²h\), where r = 0.1 cm (diameter of the wire is 0.2 cm) and h is the length of the wire we want to find. Setting the two volumes equal, we get \(36π = π(0.1)²h\). Solving for h gives us \(h = 3600\) cm. This means you can create a really long wire from that tiny sphere!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad