Pregunta
upstudy study bank question image url

\( 6 y+2<-4 \) and \( -4(2 y+3)<-68 \) Solution no solution Interval Notation

Ask by Hardy Cole. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is no solution. In interval notation, the solution set is ∅.

Solución

To solve the system of inequalities: 1. **First Inequality:** \[ 6y + 2 < -4 \] - Subtract 2 from both sides: \[ 6y < -6 \] - Divide both sides by 6: \[ y < -1 \] 2. **Second Inequality:** \[ -4(2y + 3) < -68 \] - Divide both sides by -4 (remember to reverse the inequality sign when dividing by a negative number): \[ 2y + 3 > 17 \] - Subtract 3 from both sides: \[ 2y > 14 \] - Divide both sides by 2: \[ y > 7 \] **Combining the Results:** - The first inequality requires \( y < -1 \). - The second inequality requires \( y > 7 \). There is **no real number** that satisfies both conditions simultaneously. Therefore, the system has **no solution**. **Interval Notation:** Since there is no solution, the interval is represented by the empty set symbol: \[ \varnothing \] Answer: There is no solution. In interval notation, the solution set is  ∅.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the inequality \( 6y + 2 < -4 \), first, subtract 2 from both sides to get \( 6y < -6 \). Now, divide by 6, yielding \( y < -1 \). For the second inequality \( -4(2y + 3) < -68 \), distribute the -4 to get \( -8y - 12 < -68 \). By adding 12 to both sides, we have \( -8y < -56 \). Dividing by -8 (and flipping the inequality sign) gives us \( y > 7 \). The two solutions \( y < -1 \) and \( y > 7 \) do not overlap, which means there is no solution. Therefore, in interval notation, the answer is represented as \( (-\infty, -1) \cup (7, \infty) \). Remember, when dealing with inequalities, you can sometimes encounter situations where you're left with no overlapping solutions. It's like having two exclusive clubs; you can't be in both at the same time! Also, a fun tip: always check your final intervals against the original inequalities. A quick trial can confirm if they indeed satisfy the conditions laid out!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad