Pregunta
upstudy study bank question image url

For the factored polynomial function given, find all of the zeroes and their multiplicities. \[ f(x)=(x+10)^{5}(x-4)^{2}(x-8) \] Select the correct answer below: \( x=10 \), multiplicity \( 5 ; x=-4 \), multiplicity \( 2 ; x=-8 \), multiplicity 1 . \( x=-10 \), multiplicity \( 5 ; x=4 \), multiplicity \( 2 ; x=8 \), multiplicity 1 . \( x=5 \), multiplicity \( 10 ; x=2 \), multiplicity \( 4 ; x=1 \), multiplicity 8 . \( x=-5 \), multiplicity \( 10 ; x=-2 \), multiplicity \( 4 ; x=-1 \), multiplicity 8 .

Ask by Fowler Logan. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The zeroes and their multiplicities are: - \( x = -10 \) with multiplicity 5 - \( x = 4 \) with multiplicity 2 - \( x = 8 \) with multiplicity 1

Solución

To find the zeroes of the polynomial function \( f(x) = (x+10)^5 (x-4)^2 (x-8) \) and their multiplicities, follow these steps: 1. **Identify the Zeroes:** - **\( x + 10 = 0 \)** Solving for \( x \) gives \( x = -10 \). - **\( x - 4 = 0 \)** Solving for \( x \) gives \( x = 4 \). - **\( x - 8 = 0 \)** Solving for \( x \) gives \( x = 8 \). 2. **Determine the Multiplicities:** - The exponent of each factor indicates the multiplicity of the corresponding zero. - **\( (x+10)^5 \)** implies \( x = -10 \) has a multiplicity of **5**. - **\( (x-4)^2 \)** implies \( x = 4 \) has a multiplicity of **2**. - **\( (x-8) \)** implies \( x = 8 \) has a multiplicity of **1**. 3. **Compare with the Given Options:** - The correct zeroes and their multiplicities match the second option: \( x = -10 \), multiplicity **5**; \( x = 4 \), multiplicity **2**; \( x = 8 \), multiplicity **1**. **Answer:** \( x=-10 \), multiplicity \( 5 ; x=4 \), multiplicity \( 2 ; x=8 \), multiplicity 1 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let’s break it down! The given polynomial is factored as \( f(x)=(x+10)^{5}(x-4)^{2}(x-8) \). From this, we can identify the zeroes. The zero occurs when each factor equals zero. First, for \( (x + 10)^{5} = 0 \), we have \( x = -10 \) with a multiplicity of 5. For \( (x - 4)^{2} = 0 \), we have \( x = 4 \) with a multiplicity of 2. Finally, for \( (x - 8) = 0 \), we get \( x = 8 \) with a multiplicity of 1. So the correct answer is \( x=-10 \), multiplicity \( 5 ; x=4 \), multiplicity \( 2 ; x=8 \), multiplicity 1. Zeroes of polynomials are fundamental in various fields including physics, engineering, and economics. When designing structures, for instance, engineers utilize polynomial zeroes to determine load distributions and stability. Understanding these zeroes helps predict how systems will react under stress and prevent disastrous failures! It’s common to mix up signs or forget about the multiplicities when determining zeroes. A tip is to carefully set each factor to zero and jot down the values alongside their corresponding powers. This way, you won’t miss any zeroes, and your zeroes list will be as neat as a well-organized desk!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad