Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { y = ( 1 + x ^ { 2 } ) ^ { 3 } } \\ { \frac { d y } { d x } = } \end{array} \right. \)

Ask by Barrett Boone. in Guyana
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The derivative of \( y = (1 + x^2)^3 \) with respect to \( x \) is \( \frac{dy}{dx} = 6x(1 + x^2)^2 \).

Solución

To find the derivative of \( y = (1 + x^2)^3 \) with respect to \( x \), we can use the **chain rule** from calculus. The chain rule is essential when dealing with composite functions, where one function is nested inside another. ### Step-by-Step Solution: 1. **Identify the Outer and Inner Functions:** - **Outer function:** \( u^3 \), where \( u = 1 + x^2 \) - **Inner function:** \( u = 1 + x^2 \) 2. **Differentiate the Outer Function with Respect to \( u \):** \[ \frac{d}{du}(u^3) = 3u^2 \] 3. **Differentiate the Inner Function with Respect to \( x \):** \[ \frac{du}{dx} = \frac{d}{dx}(1 + x^2) = 2x \] 4. **Apply the Chain Rule:** The chain rule states that: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = 3u^2 \cdot 2x = 6x \cdot u^2 \] Remembering that \( u = 1 + x^2 \), we substitute back: \[ \frac{dy}{dx} = 6x(1 + x^2)^2 \] ### Final Answer: \[ \frac{dy}{dx} = 6x(1 + x^2)^2 \] This derivative represents the rate at which \( y \) changes with respect to \( x \) for the given function.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the derivative \( \frac{dy}{dx} \) of the function \( y = (1 + x^2)^3 \), we can apply the chain rule. The outer function is \( u^3 \) where \( u = 1 + x^2 \). The derivative of \( u^3 \) with respect to \( u \) is \( 3u^2 \) and the derivative of \( 1 + x^2 \) with respect to \( x \) is \( 2x \). Therefore, combining these gives: \[ \frac{dy}{dx} = 3(1 + x^2)^2 \cdot (2x) = 6x(1 + x^2)^2. \] Now, let's spice things up with some extra knowledge! Calculators can actually help you visualize derivatives! Many graphing calculators and software allow you to input a function, and with a simple command or tap, they will not only show you the function's graph but also its derivative graph. It’s super handy for understanding how the slope of the tangent line changes at different points along the curve! Moreover, did you know that the concept of derivatives comes from calculus, which was developed independently by Isaac Newton and Gottfried Wilhelm Leibniz in the 17th century? Their work laid the foundation for understanding motion and change, fundamentally influencing physics, engineering, economics, and various scientific fields. Exploring their contributions can provide fascinating insights into how calculus has shaped our modern world!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad