A fair die ( 6 sided) is rolled. Express the answers in simplest fraction form. P(even *) = \( P( \) multiples of 2\( )= \) \( P( \) odd \( \#)= \) \( P( \) multiples of 4\( )= \) \( P(2 \) or 3\( )= \) \( P(7)= \) \( P(5)= \) \( P(2 \) or higher \( )= \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the probabilities, we first need to understand the total possible outcomes when rolling a fair six-sided die, which are the numbers 1, 2, 3, 4, 5, and 6. This means we have a total of 6 possible outcomes. 1. \( P(even) = \frac{3}{6} = \frac{1}{2} \) (The even numbers are 2, 4, and 6). 2. \( P(multiples \ of \ 2) = \frac{3}{6} = \frac{1}{2} \) (Again, 2, 4, and 6). 3. \( P(odd \#) = \frac{3}{6} = \frac{1}{2} \) (The odd numbers are 1, 3, and 5). 4. \( P(multiples \ of \ 4) = \frac{1}{6} \) (The only multiple of 4 is 4 itself). 5. \( P(2 \ or \ 3) = \frac{2}{6} = \frac{1}{3} \) (The numbers are 2 and 3). 6. \( P(7) = 0 \) (There is no 7 on a six-sided die). 7. \( P(5) = \frac{1}{6} \) (Only the number 5 counts). 8. \( P(2 \ or \ higher) = \frac{5}{6} \) (The numbers that are 2 or higher are 2, 3, 4, 5, and 6). So here are your final answers: P(even) = \(\frac{1}{2}\) P(multiples of 2) = \(\frac{1}{2}\) P(odd \#) = \(\frac{1}{2}\) P(multiples of 4) = \(\frac{1}{6}\) P(2 or 3) = \(\frac{1}{3}\) P(7) = 0 P(5) = \(\frac{1}{6}\) P(2 or higher) = \(\frac{5}{6}\)