Pregunta
upstudy study bank question image url

A lighthouse operator is sending signals to a ship with a \( 17^{\circ} \) angle of depression. The height of the lighthouse is 40 feet relative to sea level. Which of the following correctly applies the sine ratio to find how far away the ship is from the top of the lighthouse? Round to the nearest tenth. (1 point) ( 130.8 feet Hen

Ask by Pearson Long. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The ship is approximately 136.9 feet away from the top of the lighthouse.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To solve this problem, we can use the relationship established by the sine ratio in right triangles. The sine of the angle of depression (\( 17^{\circ} \)) is equal to the opposite side (the height of the lighthouse, which is 40 feet) divided by the hypotenuse (the distance from the top of the lighthouse to the ship). Thus, we can set up the equation: \( \sin(17^{\circ}) = \frac{40}{d} \), where \( d \) is the hypotenuse. Rearranging this gives us \( d = \frac{40}{\sin(17^{\circ})} \), which calculates to approximately 130.8 feet. Historically, lighthouses have been crucial in maritime navigation for centuries. The use of light and sound signals from lighthouses dates back to ancient civilizations, with notable examples including the Lighthouse of Alexandria, one of the Seven Wonders of the Ancient World. These structures not only guided ships safely to harbor but also symbolized hope and safety for sailors facing treacherous waters. In practical terms, understanding the angle of depression not only helps in navigation but can also be applied in various fields such as architecture and aviation. When designing high structures or navigating aircraft, engineers must consider the angle at which objects can be seen from certain heights to ensure visibility and safety. These calculations help avoid obstacles and ensure clear communication and signs in collaboration with safety protocols.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad