\( 1 \leftarrow \quad \) Simplify by using the imaginary unit \( i \). \( \frac{-6 \pm \sqrt{-108}}{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( \frac{-6 \pm \sqrt{-108}}{2} \), let's first handle the square root of the negative number. We know that \( \sqrt{-1} = i \), so we can express \( \sqrt{-108} \) as: \[ \sqrt{-108} = \sqrt{108} \cdot \sqrt{-1} = \sqrt{108} i \] Now, \( \sqrt{108} \) can be further simplified: \[ \sqrt{108} = \sqrt{36 \times 3} = \sqrt{36} \cdot \sqrt{3} = 6\sqrt{3} \] Thus, \( \sqrt{-108} = 6\sqrt{3} i \). We can now substitute this back into the original expression: \[ \frac{-6 \pm 6\sqrt{3} i}{2} \] Now, we can separate the terms in the fraction: \[ \frac{-6}{2} \pm \frac{6\sqrt{3} i}{2} = -3 \pm 3\sqrt{3} i \] Therefore, the simplified expression is: \[ -3 \pm 3\sqrt{3} i \]