aing Classkick L52-Rt Angle Ting (Th) Question 11 of 25 (1 point) । Question Aftempt 1 of 5 First use the Pythagorean theorem to find the exact length of the missing side of the right triangle. Then find the exact values of the six trigonometric functions for the angle \( \theta \) opposite the shortest side. Leg \( =4 \sqrt{23} \mathrm{~m} \), Hypotenuse \( =6 \sqrt{13} \mathrm{~m} \) Part 1 of 2 Hypotenuse \( =6 \sqrt{13} \mathrm{~m} \), Leg \( =4 \sqrt{23} \mathrm{~m} \), Leg \( =10 \mathrm{~m} \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the missing side using the Pythagorean theorem, recall the formula \(a^2 + b^2 = c^2\), where \(c\) is the hypotenuse. Here, you have \(c = 6\sqrt{13}\) and \(a = 4\sqrt{23}\). Thus, \(b^2 = (6\sqrt{13})^2 - (4\sqrt{23})^2\). Calculate this to find \(b = 10\) m. Now, for the six trigonometric functions of angle \( \theta \), where \( \theta \) is opposite the shortest leg (10 m): 1. sin(θ) = opposite/hypotenuse = \(10/6\sqrt{13}\) 2. cos(θ) = adjacent/hypotenuse = \(4\sqrt{23}/6\sqrt{13}\) 3. tan(θ) = opposite/adjacent = \(10/(4\sqrt{23})\) 4. csc(θ) = 1/sin(θ), sec(θ) = 1/cos(θ), cot(θ) = 1/tan(θ). Simplify these for the exact trigonometric values! Enjoy the journey into angles!