Pregunta
Perform the indicated operation \& simplify. Express the answer as a complex number. \( (8 i)(-11 i)=\square \)
Ask by Pritchard Washington. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( (8i)(-11i) = 88 \)
Solución
To perform the operation \( (8i) \times (-11i) \) and express the result as a complex number, follow these steps:
1. **Multiply the coefficients:**
\[
8 \times (-11) = -88
\]
2. **Multiply the imaginary units:**
\[
i \times i = i^2
\]
Recall that \( i^2 = -1 \).
3. **Combine the results:**
\[
-88 \times i^2 = -88 \times (-1) = 88
\]
4. **Express as a complex number:**
\[
88 + 0i
\]
However, since the imaginary part is zero, it simplifies to just \( 88 \).
**Final Answer:**
\[
(8i)(-11i) = 88
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
When you multiply \( (8i)(-11i) \), you start by multiplying the coefficients: \( 8 \times -11 = -88 \). Next, you multiply the imaginary units: \( i \times i = i^2 \). Since \( i^2 = -1 \), you replace \( i^2 \) with \(-1\). Thus, you have: \[ (8i)(-11i) = -88 \cdot i^2 = -88 \cdot (-1) = 88 \] So, the answer as a complex number is \( 88 + 0i \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium