Pregunta
upstudy study bank question image url

2. Find the slop of the lure and the equation of the tangent line to the function \[ f(x)=x^{3}-3 x^{2}+4 x-2 \quad \text { at point when } x=1 \]

Ask by Wood Floyd. in Canada
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The slope of the curve at \( x = 1 \) is **1**, and the equation of the tangent line at that point is \( y = x - 1 \).

Solución

To find the **slope of the curve** and the **equation of the tangent line** to the function \( f(x) = x^{3} - 3x^{2} + 4x - 2 \) at the point where \( x = 1 \), follow these steps: ### 1. Find the Slope of the Curve at \( x = 1 \) The **slope of the curve** at a particular point is given by the derivative of the function at that point. **Step 1:** Compute the derivative \( f'(x) \). \[ f(x) = x^{3} - 3x^{2} + 4x - 2 \] \[ f'(x) = \frac{d}{dx}(x^{3}) - \frac{d}{dx}(3x^{2}) + \frac{d}{dx}(4x) - \frac{d}{dx}(2) \] \[ f'(x) = 3x^{2} - 6x + 4 \] **Step 2:** Evaluate the derivative at \( x = 1 \). \[ f'(1) = 3(1)^{2} - 6(1) + 4 = 3 - 6 + 4 = 1 \] So, the **slope of the curve** at \( x = 1 \) is **1**. ### 2. Find the Equation of the Tangent Line at \( x = 1 \) The equation of the tangent line can be found using the point-slope form of the equation of a line: \[ y - y_{1} = m(x - x_{1}) \] Where: - \( m \) is the slope of the tangent line. - \( (x_{1}, y_{1}) \) is the point of tangency. **Step 1:** Find the \( y \)-coordinate of the point where \( x = 1 \). \[ f(1) = (1)^{3} - 3(1)^{2} + 4(1) - 2 = 1 - 3 + 4 - 2 = 0 \] So, the point of tangency is \( (1, 0) \). **Step 2:** Use the point-slope form with \( m = 1 \) and \( (x_{1}, y_{1}) = (1, 0) \). \[ y - 0 = 1(x - 1) \] \[ y = x - 1 \] ### **Final Answer:** - **Slope of the curve at \( x = 1 \):** \( 1 \) - **Equation of the tangent line:** \( y = x - 1 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the slope of the curve at \( x = 1 \), we need to first determine the derivative of the function \( f(x) \). The derivative, \( f'(x) \), is given by: \[ f'(x) = 3x^2 - 6x + 4 \] Now, substituting \( x = 1 \): \[ f'(1) = 3(1)^2 - 6(1) + 4 = 3 - 6 + 4 = 1 \] So, the slope of the curve at this point is \( 1 \). Next, we find the \( y \)-coordinate of the function at \( x = 1 \): \[ f(1) = (1)^3 - 3(1)^2 + 4(1) - 2 = 1 - 3 + 4 - 2 = 0 \] Now that we have the point \( (1, 0) \) and the slope \( 1 \), we can use the point-slope form of the tangent line equation: \[ y - y_1 = m(x - x_1) \] Substituting \( m = 1 \) and \( (x_1, y_1) = (1, 0) \): \[ y - 0 = 1(x - 1) \implies y = x - 1 \] So, the equation of the tangent line is \( y = x - 1 \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad